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Examples: HyperLTL vs. TeamLTL

There is a timepoint (common for all traces) after which a does not occur.
Not expressible in HyperLTL, but is in HyperQPTL.

∃p ∀π Fp ∧ G(p → G¬aπ)

Expressible in synchronous TeamLTL: FG¬a
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Examples: HyperLTL vs. TeamLTL

Temporal team semantics is universal and for now synchronous

(T , i) |= p iff ∀t ∈ T : t[i ](p) = 1 (T , i) |= ¬p iff ∀t ∈ T : t[i ](p) = 0
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Examples: HyperLTL vs. TeamLTL

Temporal team semantics is universal and for now synchronous

(T , i) |= p iff ∀t ∈ T : t[i ](p) = 1 (T , i) |= ¬p iff ∀t ∈ T : t[i ](p) = 0

(T , i) |= Fφ iff (T , j) |= φ for some j ≥ i (T , i) |= Gφ iff (T , j) |= φ for all j ≥ i
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Examples: HyperLTL vs. TeamLTL

A trace-set T satisfies φ ∨ ψ if it decomposed to sets Tφ and Tψ satisfying φ and ψ.
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Examples: HyperLTL vs. TeamLTL

A trace-set T satisfies φ ∨ ψ if it decomposed to sets Tφ and Tψ satisfying φ and ψ.

(T , i) |= φ ∨ ψ iff (T1, i) |= φ and (T2, i) |= ψ, for some T1 ∪ T2 = T

(T , i) |= φ ∧ ψ iff (T , i) |= φ and (T , i) |= ψ
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Examples: HyperLTL vs. TeamLTL

Dependence atom dep(p1, . . . , pm, q) states that p1, . . . , pm functionally determine q:
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Core of Team Semantics

▶ In most studied logics formulae are evaluated in a single state of affairs.

E.g.,
▶ a first-order assignment in first-order logic,
▶ a propositional assignment in propositional logic,
▶ a possible world of a Kripke structure in modal logic.

▶ In team semantics sets of states of affairs are considered.

E.g.,
▶ a set of first-order assignments in first-order logic,
▶ a set of propositional assignments in propositional logic,
▶ a set of possible worlds of a Kripke structure in modal logic.

▶ These sets of things are called teams.
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Team Semantics: Historical Picture
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Vä
än
än
en

M
od
al
Te
am

Lo
gi
c

M
ül
ler

Te
am
CT
L

K
re
bs
et
al
.

M
ul
tit
ea
m
s
D
ur
an
d
et
al
.

Po
ly
te
am
s

H
an
nu
la
et
al
.

Pr
ob
ab
ili
st
ic
Te
am
s

D
ur
an
d
et
al
.

Te
am
LT
L
K
re
bs
et
al
.



7/ 19

Logics for traceproperties and hyperproperties

Recipe for logics for hyperproperties:
A logic for traceproperties ⇝ add trace quantifiers

In LTL the satisfying object is a trace: T |= φ iff ∀t ∈ T : t |= φ

φ ::= p | ¬φ | (φ ∨ φ) | Xφ | φUφ

In HyperLTL the satisfying object is a set of traces and a trace assignment: Π |=T φ

φ ::= ∃πφ | ∀πφ | ψ
ψ ::= pπ | ¬ψ | (ψ ∨ ψ) | Xψ | ψUψ

HyperQPTL extends HyperLTL by (uniform) quantification of propositions: ∃pφ, ∀pφ
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LTL, HyperLTL, and TeamLTL

In LTL the satisfying object is a trace: T |= φ iff ∀t ∈ T : t |= φ

φ ::= p | ¬φ | (φ ∨ φ) | Xφ | φUφ

In HyperLTL the satisfying object is a set of traces and a trace assignment: Π |=T φ

φ ::= ∃πφ | ∀πφ | ψ
ψ ::= pπ | ¬ψ | (ψ ∨ ψ) | Xψ | ψUψ

In TeamLTL the satisfying object is a set of traces. We use team semantics: (T , i) |= φ

φ ::= p | ¬p | (φ ∨ φ) | (φ ∧ φ) | Xφ | φU | φWφ

+ new atomic statements (dependence and inclusion atoms: dep(p⃗, q), p⃗ ⊆ q⃗)
+ additional connectives (Boolean disjunction, contradictory negation, etc.)

Extensions are a well-defined way to delineate expressivity and complexity
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Temporal team semantics

Definition
Temporal team is (T , i), where T a set of traces and i ∈ N.

(T , i) |= p iff ∀t ∈ T : t[0](p) = 1

(T , i) |= ¬p iff ∀t ∈ T : t[0](p) = 0

(T , i) |= ϕ ∧ ψ iff (T , i) |= ϕ and (T , i) |= ψ

(T , i) |= ϕ ∨ ψ iff (T1, i) |= ϕ and (T2, i) |= ψ, for some T1,T2 s.t. T1 ∪ T2 = T

(T , i) |= Xφ iff (T , i + 1) |= φ

(T , i) |= ϕUψ iff ∃k ≥ i s.t. (T , k) |= ψ and ∀m : i ≤ m < k ⇒ (T ,m) |= ϕ

(T , i) |= ϕWψ iff ∀k ≥ i : (T , k) |= ϕ or ∃m s.t. i ≤ m ≤ k and (T ,m) |= ψ
As usual Fφ := (⊤Uφ) and Gφ := (φW⊥).

TeamLTL(6,⊆) is the extension with the atoms and extra connectives in the brackets.
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Generalised atoms and complete logics

For a tuple of LTL-formulae (φ1, . . . , φn) one can imagine various statemens:

▶ functional dependence between truth values,

▶ independence of truth values, user⊥partyoptions (users etc. coded as bit strings).

▶ public bits do not reveal confidental bits (o1, . . . , on, c) ⊆ (o1, . . . , on,¬c).
We can implement each of such statement as an atomic formula.

Theorem
The logic TeamLTL(6,NE,

1

A) can express all such statements.

▶ (T , i) |= φ6 ψ iff (T , i) |= φ or (T , i) |= ψ

▶ (T , i) |= NE iff T ̸= ∅.
▶ (T , i) |=

1

Aφ iff ({t}, i) |= φ, for all t ∈ T .
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Complexity results for synchronous TeamLTL

Logic Model Checking Result

TeamLTL without ∨ in PSPACE

k-coherent TeamLTL(∼) in EXPSPACE

left-flat TeamLTL(6,
1

A) in EXPSPACE

TeamLTL(⊆,6) Σ0
1-hard

TeamLTL(⊆,6,A) Σ1
1-hard

TeamLTL(∼) complete for third-order arithmetic [Luck 2020]

Table: Complexity results.

▶ k-coherence: (T , i) |= φ iff (S , i) |= φ for all S ⊆ T s.t. |S | ≤ k

▶ left-flatness: Restrict U and W syntactically to (
1

AφUψ) and (
1

AφWψ)

▶ ∼ is contradictory negation and TeamLTL(∼) subsumes all the other logics
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Expressivity can be bounded by variants of HyperQPTL

TeamLTL(6,
1

A) ≤
u

∃∗q∀πHyperQPTL (assuming left-flatness)

≤ ∃p
u

Q∗
p∀πHyperQPTL+ (general case)

< †

TeamLTL(6,NE,
1

A) ≤ ∃p
u

Q∗
p∃∗π∀πHyperQPTL+

≤

[Luck 2020] (assuming k-coherence)
TeamLTL(∼) ≤ ∀kHyperLTL

Table: Expressivity results. † holds since TeamLTL(
1

A,6) is downward closed.

▶ ∃p is a quantification of a new proposition

▶
u

Q∗
p is quantification of new uniform propositions (unique value for each time step)

▶ ∀π is a quantification of a trace variable
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Modes of asynchronicity

▶ Synchronous TeamLTL:
▶ (T , i) |= φ
▶ Collection of traces T with one global clock i .

▶ Asynchronous TeamLTL:
▶ (T , f ) |= φ
▶ Collection of traces T with a collection of local clocks f : T → N.
▶ Local clocks are completely independent.

▶ TeamLTL with time evaluation functions (tefs):
▶ (T , τ) |= φ
▶ Collection of traces T and a tef τ : N×T → N relating a global clock to local clocks.
▶ The behaviour of local clocks is determined by a tef.
▶ Synchronous TeamLTL is an instance, where the tef is synchronous!
▶ (cf. trajectories of Bonakdarpour, Prabhakar, Sánchez, NASA Formal Methods 2020)
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Complexity results for logics with tefs

Model Checking Problem for Complexity

∃TeamLTL(6,⊆) Σ0
1-hard

∀TeamLTL(6,⊆,NE) Σ0
1-hard

∃TeamCTL∗(6,⊆) Σ0
1-hard

∀TeamCTL(6,⊆) Σ0
1-hard

∃TeamCTL∗(6) Σ1
1-hard

TeamCTL∗(S,ALL) for k-synchronous or k-
context-bounded tefs

decidable

TeamCTL∗(S) for k-synchronous or k-context-
bounded tefs, where k and the number of traces
is fixed

polynomial time

Table: Complexity results overview. The Σ0
1-hardness results follow via embeddings of

synchronous TeamLTL, whereas the Σ1
1-hardness truly relies on asynchronity. ALL is the set

of all generalised atoms and S = {6,NE,
1

A, dep,⊆}.
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Asynchronous TeamLTL: sets and multisets

▶ Synchronous semantics: (T , i) |= φ (set of traces and global clock i ∈ N.)
No difference whether T is a set or a multiset.

▶ Asynchronous semantics: (T , f ) |= φ (set of traces and local clocks f : T 7→ N.)
A big difference whether T is a set or a multiset.

▶ (T , f ) |= Fφ if there is a way to advance asynchronously on the traces such that φ
becomes true.

▶ In set semantics t ∈ T may ”represent” multiple copies of a trace.

▶ Asynchronous set semantics: (T , f ) |= φ
(set of traces and local clocks f : T 7→ 2N.)

▶ Note that there is no difference in synchronous semantics (until one starts to
consider quantitative atoms such as probabilistic independence).



15/ 19

Asynchronous TeamLTL: sets and multisets

▶ Synchronous semantics: (T , i) |= φ (set of traces and global clock i ∈ N.)
No difference whether T is a set or a multiset.

▶ Asynchronous semantics: (T , f ) |= φ (set of traces and local clocks f : T 7→ N.)
A big difference whether T is a set or a multiset.
▶ (T , f ) |= Fφ if there is a way to advance asynchronously on the traces such that φ

becomes true.
▶ In set semantics t ∈ T may ”represent” multiple copies of a trace.

▶ Asynchronous set semantics: (T , f ) |= φ
(set of traces and local clocks f : T 7→ 2N.)

▶ Note that there is no difference in synchronous semantics (until one starts to
consider quantitative atoms such as probabilistic independence).



15/ 19

Asynchronous TeamLTL: sets and multisets

▶ Synchronous semantics: (T , i) |= φ (set of traces and global clock i ∈ N.)
No difference whether T is a set or a multiset.

▶ Asynchronous semantics: (T , f ) |= φ (set of traces and local clocks f : T 7→ N.)
A big difference whether T is a set or a multiset.
▶ (T , f ) |= Fφ if there is a way to advance asynchronously on the traces such that φ

becomes true.
▶ In set semantics t ∈ T may ”represent” multiple copies of a trace.

▶ Asynchronous set semantics: (T , f ) |= φ
(set of traces and local clocks f : T 7→ 2N.)

▶ Note that there is no difference in synchronous semantics (until one starts to
consider quantitative atoms such as probabilistic independence).



15/ 19

Asynchronous TeamLTL: sets and multisets

▶ Synchronous semantics: (T , i) |= φ (set of traces and global clock i ∈ N.)
No difference whether T is a set or a multiset.

▶ Asynchronous semantics: (T , f ) |= φ (set of traces and local clocks f : T 7→ N.)
A big difference whether T is a set or a multiset.
▶ (T , f ) |= Fφ if there is a way to advance asynchronously on the traces such that φ

becomes true.
▶ In set semantics t ∈ T may ”represent” multiple copies of a trace.

▶ Asynchronous set semantics: (T , f ) |= φ
(set of traces and local clocks f : T 7→ 2N.)

▶ Note that there is no difference in synchronous semantics (until one starts to
consider quantitative atoms such as probabilistic independence).



16/ 19

Expressive power of asynchronous set TeamLTL

Asynchronous set TeamLTL is expressibly weak:

▶ TeamLTL with downward closed atomic hyperproperties is as expressive as the
closure of ∀HyperLTL with ∧ and ∨.
(TeamLTL ⇒ BC(∀HyperLTL) yields exponentially many small disjuncts.)

▶ A natural fragment of TeamLTL with all atomic hyperproperties is as expressive as
the closure of ∀HyperLTL with ∧, ∨, and ¬.

The logics are decidable, but...

▶ TeamLTL(6) satisfiability and model checking are PSPACE-complete.

▶ For a natural fragment of TeamLTL(6,∼) satisfiability and model checking are in
TOWER(poly).
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Questions

▶ What do you mean by asynchronicity?
Who controls asynchronicity user vs nature vs policy?

▶ What are interesting hyperproperties that rely on checking unbounded number of
traces in concert?
Example: Bounded termination ”F term” in synchronous TeamLTL.

▶ Is there some practical interest in checking whether a data is (can be seen as)
decomposed from two datasets satisfying some properties?
Example: dep(i1, . . . , in; o1, . . . , on) ∨ dep(i ′1, . . . , i

′
n; o1, . . . , on).

The observable output o1, . . . , on has two sources that determine it.
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