
1/ 18

Rewriting Consistent Answers on Annotated Data
and Semiring Circuits

Jonni Virtema
joint work with Phokion G. Kolaitis and Nina Pardal

University of Sheffield, UK

Dagstuhl workshop 250801: Semirings in Databases, Automata, and Logic
February 20th, 2025

German Research Foundation

Funded by

2/ 18

Consistent answers

▶ Let q(x⃗) ∈ FO be a query and σ ⊆ FO be a set of integrity constraints.

▶ A relational database D is consistent, if D |= σ, and inconsistent otherwise.

▶ A repair of an inconsistent database D is a consistent database D′ such that there
is no other consistent database D′′ such that D ≤ D′′ < D′.

▶ Consistent answers CA(D, q) of q are those that are returned by all repairs of D

CA(D, q) :=
⋂

D′ is repair of D

q(D′).

Example

Let D = {R(a, a),R(a, b),R(c , d)}, σ = {∀xyz
(
R(x , y) ∧ R(x , z) → y = z

)
}, and

q = R(x , y).
Then D1 = {R(a, a),R(c , d)} and D2 = {R(a, b),R(c, d)} are subset repairs of D.
CA(D, q) = q(D1) ∩ q(D2) = {(a, a), (c , d)} ∩ {(a, b), (c , d)} = {(c, d)}.

2/ 18

Consistent answers

▶ Let q(x⃗) ∈ FO be a query and σ ⊆ FO be a set of integrity constraints.

▶ A relational database D is consistent, if D |= σ, and inconsistent otherwise.

▶ A repair of an inconsistent database D is a consistent database D′ such that there
is no other consistent database D′′ such that D ≤ D′′ < D′.

▶ Consistent answers CA(D, q) of q are those that are returned by all repairs of D

CA(D, q) :=
⋂

D′ is repair of D

q(D′).

Example

Let D = {R(a, a),R(a, b),R(c , d)}, σ = {∀xyz
(
R(x , y) ∧ R(x , z) → y = z

)
}, and

q = R(x , y).
Then D1 = {R(a, a),R(c , d)} and D2 = {R(a, b),R(c, d)} are subset repairs of D.
CA(D, q) = q(D1) ∩ q(D2) = {(a, a), (c , d)} ∩ {(a, b), (c , d)} = {(c, d)}.

2/ 18

Consistent answers

▶ Let q(x⃗) ∈ FO be a query and σ ⊆ FO be a set of integrity constraints.

▶ A relational database D is consistent, if D |= σ, and inconsistent otherwise.

▶ A repair of an inconsistent database D is a consistent database D′ such that there
is no other consistent database D′′ such that D ≤ D′′ < D′.

▶ Consistent answers CA(D, q) of q are those that are returned by all repairs of D

CA(D, q) :=
⋂

D′ is repair of D

q(D′).

Example

Let D = {R(a, a),R(a, b),R(c , d)}, σ = {∀xyz
(
R(x , y) ∧ R(x , z) → y = z

)
}, and

q = R(x , y).
Then D1 = {R(a, a),R(c , d)} and D2 = {R(a, b),R(c, d)} are subset repairs of D.
CA(D, q) = q(D1) ∩ q(D2) = {(a, a), (c , d)} ∩ {(a, b), (c , d)} = {(c, d)}.

3/ 18

Rewriting consistent answers and Boolean circuits

A query q′ is a rewriting of the CA’s of q, if q′(D) = CA(D, q), for every database D.

Theorem ([Koutris and Wijsen, 2017])

Let q be a self-join free conjunctive query with one key constraint per relation. The
consistent answers of q are a) FO-rewritable, or b) computable in PTIME but not
FO-rewritable, or c) coNP-complete.

Data complexity of first-order logic is DLOGTIME-uniform AC0 (i.e., constant depth
polynomial size Boolean circuits) [Barrington et al., 1990].

Goal: Obtain similar trichotomy for semiring-annotated data.

3/ 18

Rewriting consistent answers and Boolean circuits

A query q′ is a rewriting of the CA’s of q, if q′(D) = CA(D, q), for every database D.

Theorem ([Koutris and Wijsen, 2017])

Let q be a self-join free conjunctive query with one key constraint per relation. The
consistent answers of q are a) FO-rewritable, or b) computable in PTIME but not
FO-rewritable, or c) coNP-complete.

Data complexity of first-order logic is DLOGTIME-uniform AC0 (i.e., constant depth
polynomial size Boolean circuits) [Barrington et al., 1990].

Goal: Obtain similar trichotomy for semiring-annotated data.

3/ 18

Rewriting consistent answers and Boolean circuits

A query q′ is a rewriting of the CA’s of q, if q′(D) = CA(D, q), for every database D.

Theorem ([Koutris and Wijsen, 2017])

Let q be a self-join free conjunctive query with one key constraint per relation. The
consistent answers of q are a) FO-rewritable, or b) computable in PTIME but not
FO-rewritable, or c) coNP-complete.

Data complexity of first-order logic is DLOGTIME-uniform AC0 (i.e., constant depth
polynomial size Boolean circuits) [Barrington et al., 1990].

Goal: Obtain similar trichotomy for semiring-annotated data.

4/ 18

Consistent answers on semiring annotated data

Let K = (K ,+,×, 0, 1) be a positive semiring and A a set.

▶ A K -relation is a function f : An → K .

▶ A support of f is {a⃗ | f (a⃗) ̸= 0}.
▶ A K-database is a finite collection of K -relations (with finite supports).

Consider semiring semantics of FO given earlier by Val and Erich:

▶ The answer of a query q(x⃗) on a K -database D is the K -relation q(D).

▶ Consistent answers CA(D, q) of q are those that are returned by all repairs of D

CA(D, q) :=
⋂

D′ is repair of D

q(D′).

We need to define what returned by all repairs of D means!

4/ 18

Consistent answers on semiring annotated data

Let K = (K ,+,×, 0, 1) be a positive semiring and A a set.

▶ A K -relation is a function f : An → K .

▶ A support of f is {a⃗ | f (a⃗) ̸= 0}.
▶ A K-database is a finite collection of K -relations (with finite supports).

Consider semiring semantics of FO given earlier by Val and Erich:

▶ The answer of a query q(x⃗) on a K -database D is the K -relation q(D).

▶ Consistent answers CA(D, q) of q are those that are returned by all repairs of D

CA(D, q) :=
⋂

D′ is repair of D

q(D′).

We need to define what returned by all repairs of D means!

5/ 18

Repairs of K databases

Recall: A repair of an inconsistent database D is a consistent database D′ such that
there is no other consistent database D′′ such that D ≤ D′′ < D′.

Definition: A K -database D satisfies a 0-ary query q, if q(D) ̸= 0.

To compare K -databases, we stipulate that K is a naturally ordered positive semiring.

▶ For K -relations, define R ≤ S if and only if R(a⃗) ≤ S(a⃗), for every suitable a⃗.

▶ Annotation aware generalisations of subset and superset repairs arise.

▶ For key constraints, this definition coincides with set-based subset repairs.

Example

If D = {R(a, a) = 3,R(a, b) = 2,R(c , d) = 4} and indicates the key attributes, then
D1 = {R(a, a) = 3,R(c , d) = 4} and D2 = {R(a, b) = 2,R(c , d) = 4} are the
(subset) repairs of D.

5/ 18

Repairs of K databases

Recall: A repair of an inconsistent database D is a consistent database D′ such that
there is no other consistent database D′′ such that D ≤ D′′ < D′.

Definition: A K -database D satisfies a 0-ary query q, if q(D) ̸= 0.

To compare K -databases, we stipulate that K is a naturally ordered positive semiring.

▶ For K -relations, define R ≤ S if and only if R(a⃗) ≤ S(a⃗), for every suitable a⃗.

▶ Annotation aware generalisations of subset and superset repairs arise.

▶ For key constraints, this definition coincides with set-based subset repairs.

Example

If D = {R(a, a) = 3,R(a, b) = 2,R(c , d) = 4} and indicates the key attributes, then
D1 = {R(a, a) = 3,R(c , d) = 4} and D2 = {R(a, b) = 2,R(c , d) = 4} are the
(subset) repairs of D.

5/ 18

Repairs of K databases

Recall: A repair of an inconsistent database D is a consistent database D′ such that
there is no other consistent database D′′ such that D ≤ D′′ < D′.

Definition: A K -database D satisfies a 0-ary query q, if q(D) ̸= 0.

To compare K -databases, we stipulate that K is a naturally ordered positive semiring.

▶ For K -relations, define R ≤ S if and only if R(a⃗) ≤ S(a⃗), for every suitable a⃗.

▶ Annotation aware generalisations of subset and superset repairs arise.

▶ For key constraints, this definition coincides with set-based subset repairs.

Example

If D = {R(a, a) = 3,R(a, b) = 2,R(c , d) = 4} and indicates the key attributes, then
D1 = {R(a, a) = 3,R(c , d) = 4} and D2 = {R(a, b) = 2,R(c , d) = 4} are the
(subset) repairs of D.

6/ 18

Consistent answers in semiring semantics

Recall: Consistent answers CA(D, φ) of are those that are returned by all repairs of D

CA(D, q) :=
⋂

D′ is repair of D

q(D′).

In the ordered semiring setting, we replace the intersection by taking the minimum:

mCA(D, α, q) := min
D′ is repair of D

q(D′, α).

(cf. [Feng et al., 2019], for bounding CAs from below and above.)

We add assignment α to the syntax, so that the value is an element of a semiring.

Example

If D1 = {R(a, a) = 3,R(c , a) = 4} and D2 = {R(a, b) = 2,R(c , a) = 4} are repairs of
D, and q = ∃xR(x , y), then mCA(D, y 7→ a, q) = min{7, 4} = 4 and
mCA(D, y 7→ b, q) = min{0, 2} = 0.

6/ 18

Consistent answers in semiring semantics

Recall: Consistent answers CA(D, φ) of are those that are returned by all repairs of D

CA(D, q) :=
⋂

D′ is repair of D

q(D′).

In the ordered semiring setting, we replace the intersection by taking the minimum:

mCA(D, α, q) := min
D′ is repair of D

q(D′, α).

(cf. [Feng et al., 2019], for bounding CAs from below and above.)

We add assignment α to the syntax, so that the value is an element of a semiring.

Example

If D1 = {R(a, a) = 3,R(c , a) = 4} and D2 = {R(a, b) = 2,R(c , a) = 4} are repairs of
D, and q = ∃xR(x , y), then mCA(D, y 7→ a, q) = min{7, 4} = 4 and
mCA(D, y 7→ b, q) = min{0, 2} = 0.

7/ 18

Reminder of the goal: trichotomy theorem for semiring-annotated data

Definition (Recall)

The consistent answers CA(q) of q is FO-rewritable, if there exists a φ ∈ FO such that

CA(D, q) = φ(D),

for every database D.

Theorem ([Koutris and Wijsen, 2017])

Let q be a self-join free conjunctive query with one key constraint per relation. The
the consistent answers CA(q) is first-order rewritable, or it is polynomial-time
computable but it is not first-order rewritable, or it is coNP-complete.

Data complexity of first-order logic is DLOGTIME-uniform AC0 (i.e., constant depth
polynomial size Boolean circuits).

8/ 18

Logic for rewriting mCA(D, α, q)

Ingredients for rewriting a conjunctive query qpath = ∃x∃y∃z(R(x ; y) ∧ S(y ; z)):

CA(D, q) :=
⋂

D′ is repair of D

q(D′).

[Fuxman and Miller, 2007] rewriting: ∃x∃z ′(R(x , z ′) ∧ ∀z(R(x , z) → ∃yS(z , y)))

Semiring setting: Similar rewriting requires care; a) universal quantifier, b) implication.

mCA(D, α, q) := min
D′ is repair of D

q(D′, α).

a) We wish to take a minimum value over all repairs, not to multiply values.

b) In semiring setting implication (read: negation) is problematic to define.

c) Rewriting should retain some benefits of FO-rewriting (e.g., complexity-wise).

8/ 18

Logic for rewriting mCA(D, α, q)

Ingredients for rewriting a conjunctive query qpath = ∃x∃y∃z(R(x ; y) ∧ S(y ; z)):

CA(D, q) :=
⋂

D′ is repair of D

q(D′).

[Fuxman and Miller, 2007] rewriting: ∃x∃z ′(R(x , z ′) ∧ ∀z(R(x , z) → ∃yS(z , y)))

Semiring setting: Similar rewriting requires care; a) universal quantifier, b) implication.

mCA(D, α, q) := min
D′ is repair of D

q(D′, α).

a) We wish to take a minimum value over all repairs, not to multiply values.

b) In semiring setting implication (read: negation) is problematic to define.

c) Rewriting should retain some benefits of FO-rewriting (e.g., complexity-wise).

9/ 18

Logic for rewritings: FO(∇G)

In semiring semantics, for qpath = ∃x∃y∃z(R(x ; y) ∧ S(y ; z))

mCA(D, qpath) = min
D′∈Rep(D)

∑
a,b,c∈D′

RD′
(a, b)× SD′

(b, c)

=
∑
a∈D

min
b∈D:RD(a,b)̸=0

(RD(a, b)× min
c∈D:SD(b,c)̸=0

SD(b, c))

This can be rewritten as

∃x∇R(x ,y)y . (R(x , y)×∇S(y ,z)z . S(y , z)).

if we interpret the quantifier ∇G as sort of a minimisation over a guard G .

∇G x is not a satisfactory quantifier; we show how to express it without a guard!

9/ 18

Logic for rewritings: FO(∇G)

In semiring semantics, for qpath = ∃x∃y∃z(R(x ; y) ∧ S(y ; z))

mCA(D, qpath) = min
D′∈Rep(D)

∑
a,b,c∈D′

RD′
(a, b)× SD′

(b, c)

=
∑
a∈D

min
b∈D:RD(a,b)̸=0

(RD(a, b)× min
c∈D:SD(b,c)̸=0

SD(b, c))

This can be rewritten as

∃x∇R(x ,y)y . (R(x , y)×∇S(y ,z)z .S(y , z)).

if we interpret the quantifier ∇G as sort of a minimisation over a guard G .

∇G x is not a satisfactory quantifier; we show how to express it without a guard!

10/ 18

Logic for rewritings: LK

The syntax of LK , for naturally ordered positive semiring K, is:

φ :=R(x⃗) | x = y |φ ∧ φ |φ ∨ φ | ∃x φ | ∇xφ(x) |Supp(φ).

Semantics is the semiring semantics for FO: ∨ is addition, ∧ is multiplication, ∃x is
aggregate sum, R(α(x⃗)) is the annotation given by the K-relation R, and x = y is the
Boolean truth value of the identity.

Quantifier ∇ corresponds to minimisation and Supp is a weak negation.

∇x φ(x)(D, α) = min
a∈D

φ(D, α(a/x)) Supp(φ)(D, α) =

{
1 if φ(D, α) = 0

0 otherwise,

φ(D, α) is the value of the formula φ in structure D and assignment α.

10/ 18

Logic for rewritings: LK

The syntax of LK , for naturally ordered positive semiring K, is:

φ :=R(x⃗) | x = y |φ ∧ φ |φ ∨ φ | ∃x φ | ∇xφ(x) |Supp(φ).

Semantics is the semiring semantics for FO: ∨ is addition, ∧ is multiplication, ∃x is
aggregate sum, R(α(x⃗)) is the annotation given by the K-relation R, and x = y is the
Boolean truth value of the identity.

Quantifier ∇ corresponds to minimisation and Supp is a weak negation.

∇x φ(x)(D, α) = min
a∈D

φ(D, α(a/x)) Supp(φ)(D, α) =

{
1 if φ(D, α) = 0

0 otherwise,

φ(D, α) is the value of the formula φ in structure D and assignment α.

11/ 18

Expressing guarded minimisation without guards

The formula ∇x φ(x) computes the minimum value of φ(a/x), where a ranges over
the active domain of the database. When we want a to range over the support of some
definable predicate we use the following shorthand

∇G z . φ(y⃗ , z) := ∇z .
((

Supp(G (y⃗ , z)) ∧ ∃zφ(y⃗ , z) ∧ χ
)
∨
(
φ(y⃗ , z) ∧ χ

))
,

where G , φ ∈ LK and χ := Supp(∃zG (y⃗ , z)).

Above, χ makes the evaluation to 0, if the guard is “empty”.

11/ 18

Expressing guarded minimisation without guards

The formula ∇x φ(x) computes the minimum value of φ(a/x), where a ranges over
the active domain of the database. When we want a to range over the support of some
non-empty definable predicate we use the following shorthand

∇G z . φ(y⃗ , z) := ∇z .
((

Supp(G (y⃗ , z)) ∧ ∃zφ(y⃗ , z)
)
∨ φ(y⃗ , z)

)
,

11/ 18

Expressing guarded minimisation without guards

The formula ∇x φ(x) computes the minimum value of φ(a/x), where a ranges over
the active domain of the database. When we want a to range over the support of some
non-empty definable predicate we use the following shorthand

∇G z . φ(y⃗ , z) := ∇z .
((

Supp(G (y⃗ , z)) ∧ ∃zφ(y⃗ , z)
)
∨ φ(y⃗ , z)

)
,

Proposition

If G and φ are LK -formulae, D is a K -database, and α is an assignment, we have that

∇Gx .φ(x)(D, α) = min
a∈D:G(D,α(a/x)) ̸=0

φ(D, α(a/x)).

12/ 18

Rewritability theorem

Theorem ([Koutris and Wijsen, 2017])

Let q be a self-join free conjunctive query and Σ a set of key constraints, one for each
relation in q. The attack graph of q is acyclic if and only if CA(q,Σ) is FO-rewritable.

Theorem
Let K be a naturally ordered positive semiring, q be a self-join free conjunctive query,
and Σ a set of key constraints, one for each relation in q. The attack graph of q is
acyclic if and only if mCAK (q,Σ) is LK -rewritable.

The rewriting of mCAK (q) is defined recursively starting from an un-attacked atom R:

∃y⃗x⃗∇R(y⃗ ;z⃗)z⃗x⃗ .mCAK (q[y⃗x⃗ , z⃗x⃗] \ R(y⃗ ; z⃗)).

12/ 18

Rewritability theorem

Theorem ([Koutris and Wijsen, 2017])

Let q be a self-join free conjunctive query and Σ a set of key constraints, one for each
relation in q. The attack graph of q is acyclic if and only if CA(q,Σ) is FO-rewritable.

Theorem
Let K be a naturally ordered positive semiring, q be a self-join free conjunctive query,
and Σ a set of key constraints, one for each relation in q. The attack graph of q is
acyclic if and only if mCAK (q,Σ) is LK -rewritable.

The rewriting of mCAK (q) is defined recursively starting from an un-attacked atom R:

∃y⃗x⃗∇R(y⃗ ;z⃗)z⃗x⃗ .mCAK (q[y⃗x⃗ , z⃗x⃗] \ R(y⃗ ; z⃗)).

13/ 18

Why is rewriting in LK a nice thing to have?

Data complexity of FO is DLOGTIME-uniform AC0. How about LK?

The correct model of computation to relate LK is a variant of arithmetic AC0 with
gates corresponding to semiring operations!

▶ The model needs to be able to take semiring values as input.
▶ It needs to have gates for evaluating LK -formulae compositionally:

▶ + -gate for disjunction (fan-in 2),
▶ × -gate for conjunction (fan-in 2),
▶ + -gate for existential quantifier (unbounded fan-in),
▶ min -gate for ∇ (unbounded fan-in),
▶ Supp-gate (fan-in 1).

13/ 18

Why is rewriting in LK a nice thing to have?

Data complexity of FO is DLOGTIME-uniform AC0. How about LK?

The correct model of computation to relate LK is a variant of arithmetic AC0 with
gates corresponding to semiring operations!

▶ The model needs to be able to take semiring values as input.
▶ It needs to have gates for evaluating LK -formulae compositionally:

▶ + -gate for disjunction (fan-in 2),
▶ × -gate for conjunction (fan-in 2),
▶ + -gate for existential quantifier (unbounded fan-in),
▶ min -gate for ∇ (unbounded fan-in),
▶ Supp-gate (fan-in 1).

14/ 18

K-circuits

Definition
Let K be a naturally ordered positive semiring.
A K -circuit is a finite simple directed acyclic graph of labeled nodes (i.e., gates) s.t.

▶ there are gates labeled input, with indegree 0,

▶ there are gates labeled constant, with indegree 0 and labeled with a c ∈ K ,

▶ there are gates labeled addition, multiplication, min, and Supp,

▶ exactly one gate of outdegree 0 is additionally labeled output,

Addition, multiplication, and min gates have arbitrary in-degree.
Depth of a circuit is the length of the longest path from an input to an output gate.
Size of a circuit is the number of gates in it.

14/ 18

K-circuits

Definition
Let K be a naturally ordered positive semiring.
A K -circuit is a finite simple directed acyclic graph of labeled nodes (i.e., gates) s.t.

▶ there are gates labeled input, with indegree 0,

▶ there are gates labeled constant, with indegree 0 and labeled with a c ∈ K ,

▶ there are gates labeled addition, multiplication, min, and Supp,

▶ exactly one gate of outdegree 0 is additionally labeled output,

Addition, multiplication, and min gates have arbitrary in-degree.
Depth of a circuit is the length of the longest path from an input to an output gate.
Size of a circuit is the number of gates in it.

14/ 18

K-circuits

Definition
Let K be a naturally ordered positive semiring.
A K -circuit is a finite simple directed acyclic graph of labeled nodes (i.e., gates) s.t.

▶ there are gates labeled input, with indegree 0,

▶ there are gates labeled constant, with indegree 0 and labeled with a c ∈ K ,

▶ there are gates labeled addition, multiplication, min, and Supp,

▶ exactly one gate of outdegree 0 is additionally labeled output,

▶ input gates are ordered.

Addition, multiplication, and min gates have arbitrary in-degree.
Depth of a circuit is the length of the longest path from an input to an output gate.
Size of a circuit is the number of gates in it.

A circuit computes functions of type Kn → K .

15/ 18

Circuit families

▶ A K -circuit Cn computes a function fn : K
n → K , for some n ∈ N.

▶ A family of K -circuits (Cn)n∈N computes a function fC : K
∗ → K .

▶ To consider (Cn)n∈N as an algorithm, n 7→ Cn should be computable.

▶ DLOGTIME-uniform AC0
K (+,×2,min, Supp)

▶ (Cn)n∈N is a family of constant depth polynomial size (in n) circuits,
▶ indegree of ×-gates is 2,
▶ there is a DLOGTIME algorithm that describes Cn, given n.

Fact
DLOGTIME-uniform AC0

B(+,×2,min,Supp) is DLOGTIME-uniform AC0.

Proposition

Data complexity of LK is in DLOGTIME-uniform AC0
K (+,×2,min,Supp).

15/ 18

Circuit families

▶ A K -circuit Cn computes a function fn : K
n → K , for some n ∈ N.

▶ A family of K -circuits (Cn)n∈N computes a function fC : K
∗ → K .

▶ To consider (Cn)n∈N as an algorithm, n 7→ Cn should be computable.

▶ DLOGTIME-uniform AC0
K (+,×2,min, Supp)

▶ (Cn)n∈N is a family of constant depth polynomial size (in n) circuits,
▶ indegree of ×-gates is 2,
▶ there is a DLOGTIME algorithm that describes Cn, given n.

Fact
DLOGTIME-uniform AC0

B(+,×2,min,Supp) is DLOGTIME-uniform AC0.

Proposition

Data complexity of LK is in DLOGTIME-uniform AC0
K (+,×2,min,Supp).

15/ 18

Circuit families

▶ A K -circuit Cn computes a function fn : K
n → K , for some n ∈ N.

▶ A family of K -circuits (Cn)n∈N computes a function fC : K
∗ → K .

▶ To consider (Cn)n∈N as an algorithm, n 7→ Cn should be computable.

▶ DLOGTIME-uniform AC0
K (+,×2,min, Supp)

▶ (Cn)n∈N is a family of constant depth polynomial size (in n) circuits,
▶ indegree of ×-gates is 2,
▶ there is a DLOGTIME algorithm that describes Cn, given n.

Fact
DLOGTIME-uniform AC0

B(+,×2,min,Supp) is DLOGTIME-uniform AC0.

Proposition

Data complexity of LK is in DLOGTIME-uniform AC0
K (+,×2,min,Supp).

15/ 18

Circuit families

▶ A K -circuit Cn computes a function fn : K
n → K , for some n ∈ N.

▶ A family of K -circuits (Cn)n∈N computes a function fC : K
∗ → K .

▶ To consider (Cn)n∈N as an algorithm, n 7→ Cn should be computable.

▶ DLOGTIME-uniform AC0
K (+,×2,min, Supp)

▶ (Cn)n∈N is a family of constant depth polynomial size (in n) circuits,
▶ indegree of ×-gates is 2,
▶ there is a DLOGTIME algorithm that describes Cn, given n.

Fact
DLOGTIME-uniform AC0

B(+,×2,min,Supp) is DLOGTIME-uniform AC0.

Proposition

Data complexity of LK is in DLOGTIME-uniform AC0
K (+,×2,min,Supp).

16/ 18

Why are AC0
K (+,×2,min, Supp)-circuits nice?

▶ AC0
k(+,×2) circuit families compute polynomial functions of constant degree.

▶ AC0
K (+,×2,min)-circuits add polynomial many min comparisons between values.

▶ Addition of Supp gates adds polynomial many comparisons between values and 0.

▶ Assuming a ≤ b comparisons between semiring values can be checked effectively,
AC0

K (+,×2,min,Supp) families compute in a strong sense polynomial functions.

Theorem (Recap)

Let K be a naturally ordered positive semiring, q be a self-join free conjunctive query,
and Σ a set of key constraints, one for each relation in q. The attack graph of q is
acyclic if and only if mCAK (q,Σ) is LK -rewritable.

Data complexity of LK is in DLOGTIME-uniform AC0
K (+,×2,min,Supp), which is

computationally nice.

16/ 18

Why are AC0
K (+,×2,min, Supp)-circuits nice?

▶ AC0
k(+,×2) circuit families compute polynomial functions of constant degree.

▶ AC0
K (+,×2,min)-circuits add polynomial many min comparisons between values.

▶ Addition of Supp gates adds polynomial many comparisons between values and 0.

▶ Assuming a ≤ b comparisons between semiring values can be checked effectively,
AC0

K (+,×2,min,Supp) families compute in a strong sense polynomial functions.

Theorem (Recap)

Let K be a naturally ordered positive semiring, q be a self-join free conjunctive query,
and Σ a set of key constraints, one for each relation in q. The attack graph of q is
acyclic if and only if mCAK (q,Σ) is LK -rewritable.

Data complexity of LK is in DLOGTIME-uniform AC0
K (+,×2,min,Supp), which is

computationally nice.

16/ 18

Why are AC0
K (+,×2,min, Supp)-circuits nice?

▶ AC0
k(+,×2) circuit families compute polynomial functions of constant degree.

▶ AC0
K (+,×2,min)-circuits add polynomial many min comparisons between values.

▶ Addition of Supp gates adds polynomial many comparisons between values and 0.

▶ Assuming a ≤ b comparisons between semiring values can be checked effectively,
AC0

K (+,×2,min,Supp) families compute in a strong sense polynomial functions.

Theorem (Recap)

Let K be a naturally ordered positive semiring, q be a self-join free conjunctive query,
and Σ a set of key constraints, one for each relation in q. The attack graph of q is
acyclic if and only if mCAK (q,Σ) is LK -rewritable.

Data complexity of LK is in DLOGTIME-uniform AC0
K (+,×2,min,Supp), which is

computationally nice.

16/ 18

Why are AC0
K (+,×2,min, Supp)-circuits nice?

▶ AC0
k(+,×2) circuit families compute polynomial functions of constant degree.

▶ AC0
K (+,×2,min)-circuits add polynomial many min comparisons between values.

▶ Addition of Supp gates adds polynomial many comparisons between values and 0.

▶ Assuming a ≤ b comparisons between semiring values can be checked effectively,
AC0

K (+,×2,min,Supp) families compute in a strong sense polynomial functions.

Theorem (Recap)

Let K be a naturally ordered positive semiring, q be a self-join free conjunctive query,
and Σ a set of key constraints, one for each relation in q. The attack graph of q is
acyclic if and only if mCAK (q,Σ) is LK -rewritable.

Data complexity of LK is in DLOGTIME-uniform AC0
K (+,×2,min,Supp), which is

computationally nice.

16/ 18

Why are AC0
K (+,×2,min, Supp)-circuits nice?

▶ AC0
k(+,×2) circuit families compute polynomial functions of constant degree.

▶ AC0
K (+,×2,min)-circuits add polynomial many min comparisons between values.

▶ Addition of Supp gates adds polynomial many comparisons between values and 0.

▶ Assuming a ≤ b comparisons between semiring values can be checked effectively,
AC0

K (+,×2,min,Supp) families compute in a strong sense polynomial functions.

Theorem (Recap)

Let K be a naturally ordered positive semiring, q be a self-join free conjunctive query,
and Σ a set of key constraints, one for each relation in q. The attack graph of q is
acyclic if and only if mCAK (q,Σ) is LK -rewritable.

Data complexity of LK is in DLOGTIME-uniform AC0
K (+,×2,min,Supp), which is

computationally nice.

17/ 18

Descriptive complexity theory

Logic and Computation Through the Lens of Semirings (by Helsinki + Hannover, ’25)
T. Barlag, N. Fröhlich, T. Hankala, M. Hannula, M. Hirvonen, V. Holzapfel, J.Kontinen, A. Meier, L. Strieker.

▶ For positive commutative semirings K and the BSS-model of computation:
▶ Data complexity of FOK is in PK.
▶ Model checking for FOK is in PSPACEK.

▶ For positive commutative semirings K and ordered structures:
▶ FOK(ArbK) = FAC0

K (non-uniform).

18/ 18

Barlag, T., Fröhlich, N., Hankala, T., Hannula, M., Hirvonen, M., Holzapfel, V., Kontinen, J., Meier, A.,
and Strieker, L. (2025).
Logic and computation through the lens of semirings.
CoRR, abs/2502.12939.

Barrington, D. A. M., Immerman, N., and Straubing, H. (1990).

On uniformity within nc1.
J. Comput. Syst. Sci., 41(3):274–306.

Feng, S., Huber, A., Glavic, B., and Kennedy, O. (2019).
Uncertainty annotated databases - A lightweight approach for approximating certain answers.
In SIGMOD Conference, pages 1313–1330. ACM.

Fuxman, A. and Miller, R. J. (2007).
First-order query rewriting for inconsistent databases.
J. Comput. Syst. Sci., 73(4):610–635.

Kolaitis, P. G., Pardal, N., and Virtema, J. (2024).
Rewriting consistent answers on annotated data.
CoRR, abs/2412.11661.

Koutris, P. and Wijsen, J. (2017).
Consistent query answering for self-join-free conjunctive queries under primary key constraints.
ACM Trans. Database Syst., 42(2):9:1–9:45.

