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» Let g(x) € FO be a query and 0 C FO be a set of integrity constraints.
> A relational database D is consistent, if D |= o, and inconsistent otherwise.

» A repair of an inconsistent database D is a consistent database D’ such that there
is no other consistent database D” such that D < D” < D',

» Consistent answers CA(D, q) of g are those that are returned by all repairs of D

CAMD,q):= (]  aD).

D’ is repair of D

Example
Let D = {R(a, a), R(a, b), R(c,d)}, o = {Vxyz (R(x,y) AR(x,z) = y = z)}, and

q = R(x,y).
Then Dy = {R(a,a),R(c,d)} and Dy = {R(a, b), R(c, d)} are subset repairs of D.

CA(D, q) = q(D1) N q(Dz2) = {(a,a). (c. d)} N {(a, b), (c, d)} = {(c.d)}.
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Rewriting consistent answers and Boolean circuits

A query ¢’ is a rewriting of the CA's of q, if ¢’(D) = CA(D, q), for every database D.

Theorem ([Koutris and Wijsen, 2017])

Let g be a self-join free conjunctive query with one key constraint per relation. The
consistent answers of q are a) FO-rewritable, or b) computable in PTIME but not
FO-rewritable, or c) coNP-complete.

Data complexity of first-order logic is DLOGTIME-uniform AC° (i.e., constant depth
polynomial size Boolean circuits) [Barrington et al., 1990].

Goal: Obtain similar trichotomy for semiring-annotated data.
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» A support of fis {3| (&) # 0}.

» A K-database is a finite collection of K-relations (with finite supports).



Consistent answers on semiring annotated data

Let K = (K,+, x,0,1) be a positive semiring and A a set.

» A K-relation is a function f : A" — K.

» A support of fis {3| (&) # 0}.

» A K-database is a finite collection of K-relations (with finite supports).
Consider semiring semantics of FO given earlier by Val and Erich:

» The answer of a query g(X) on a K-database D is the K-relation g(D).

» Consistent answers CA(D, q) of g are those that are returned by all repairs of D

CAD,q)= () a(D).
D’ is repair of D

We need to define what returned by all repairs of D means!
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Repairs of K databases

Recall: A repair of an inconsistent database D is a consistent database D’ such that
there is no other consistent database D” such that D < D" < D’.

Definition: A K-database D satisfies a 0-ary query g, if g(D) # 0.

To compare K-databases, we stipulate that K is a naturally ordered positive semiring.
» For K-relations, define R < S if and only if R(a) < S(&), for every suitable a.
» Annotation aware generalisations of subset and superset repairs arise.

» For key constraints, this definition coincides with set-based subset repairs.

Example

If D={R(a,a) =3,R(a,b) =2,R(c,d) =4} and _ indicates the key attributes, then
D; ={R(a,a) =3,R(c,d) =4} and Dy = {R(a, b) = 2, R(c, d) = 4} are the
(subset) repairs of D.
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In the ordered semiring setting, we replace the intersection by taking the minimum:

mCA(D, «a,q) = min q(D’, ).
D’ is repair of D

(cf. [Feng et al., 2019], for bounding CAs from below and above.)

We add assignment « to the syntax, so that the value is an element of a semiring.



Consistent answers in semiring semantics
Recall: Consistent answers CA(D, ¢) of are those that are returned by all repairs of D
CAD,q):= (] qD).
D’ is repair of D

In the ordered semiring setting, we replace the intersection by taking the minimum:

mCA(D, «a,q) = min q(D’, ).
D’ is repair of D

(cf. [Feng et al., 2019], for bounding CAs from below and above.)
We add assignment « to the syntax, so that the value is an element of a semiring.

Example

If D1 = {R(a,a) =3,R(c,a) =4} and Do = {R(a, b) = 2, R(c, a) = 4} are repairs of
D, and g = 3xR(x, y), then mCA(D, y — a,q) = min{7,4} = 4 and

mCA(D,y — b,q) = min{0,2} = 0.



Reminder of the goal: trichotomy theorem for semiring-annotated data

Definition (Recall)
The consistent answers CA(q) of g is FO-rewritable, if there exists a ¢ € FO such that

CA(D, q) = ¢(D),
for every database D.

Theorem ([Koutris and Wijsen, 2017])

Let g be a self-join free conjunctive query with one key constraint per relation. The
the consistent answers CA(q) is first-order rewritable, or it is polynomial-time
computable but it is not first-order rewritable, or it is coNP-complete.

Data complexity of first-order logic is DLOGTIME-uniform AC° (i.e., constant depth
polynomial size Boolean circuits).
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D’ is repair of D
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Logic for rewriting mCA(D, a, q)

Ingredients for rewriting a conjunctive query gpath = 3x3y3z(R(x;y) A S(y; 2)):
CAD,q):= (] qD).
D’ is repair of D
[Fuxman and Miller, 2007] rewriting: 3x3Z'(R(x,z") AVz(R(x, z) — JyS(z,y)))

Semiring setting: Similar rewriting requires care; a) universal quantifier, b) implication.

mCA(D, «,q) = min q(D’, ).
D’ is repair of D

a) We wish to take a minimum value over all repairs, not to multiply values.
b) In semiring setting implication (read: negation) is problematic to define.

c) Rewriting should retain some benefits of FO-rewriting (e.g., complexity-wise).
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In semiring semantics, for gparn = IxIyIz(R(x;y) A S(y; 2))

mCA(D, Gpaen) = |, min > RY(a,b) x S”'(b,¢)
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bED RD (a,b)# ceD:SP(b,c)#0



Logic for rewritings: FO(V¢)

In semiring semantics, for gparn = IxIyIz(R(x;y) A S(y; 2))

mCA(D, gpath) = min Z R (a, b) x SP'(b, c)

D€ Rep(D) a,b,ceD’
= Z min RD(a, b) x min SP(b,¢))
bED RD (a,b)# ceD:SP(b,c)#0

This can be rewritten as

E]XVR(x,y))/' (R(va) X vS(y,z)Z' S(ya Z))

if we interpret the quantifier V¢ as sort of a minimisation over a guard G.

V x is not a satisfactory quantifier; we show how to express it without a guard!
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The syntax of Lk, for naturally ordered positive semiring K, is:

o =R(X) | x=yloAp|lpVe|Ixe|Vxe(x)|Supp(p).

Semantics is the semiring semantics for FO: V is addition, A is multiplication, dx is
aggregate sum, R(a(X)) is the annotation given by the K-relation R, and x = y is the
Boolean truth value of the identity.



Logic for rewritings: Lk

The syntax of Lk, for naturally ordered positive semiring K, is:

o =R(X) | x=yloAp|lpVe|Ixe|Vxe(x)|Supp(p).

Semantics is the semiring semantics for FO: V is addition, A is multiplication, dx is
aggregate sum, R(a(X)) is the annotation given by the K-relation R, and x = y is the
Boolean truth value of the identity.

Quantifier V corresponds to minimisation and Supp is a weak negation.

1 ife(D,a)=0

Vxp(x)(D, a) = minp(D, a(a/x)) Supp(cp)(Dva)Z{O otherise

©(D, @) is the value of the formula ¢ in structure D and assignment «.



Expressing guarded minimisation without guards

The formula Vx ¢(x) computes the minimum value of ¢(a/x), where a ranges over
the active domain of the database. When we want a to range over the support of some
definable predicate we use the following shorthand

Voz.¢(7.2) = Vz.( (Supp(G(7. 2)) A 320(7,2) AX) V (7. 2) A X)),

where G, p € Lk and x := Supp(3zG(y, z)).

Above, y makes the evaluation to 0, if the guard is “empty”.
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Expressing guarded minimisation without guards

The formula Vx ¢(x) computes the minimum value of ¢(a/x), where a ranges over
the active domain of the database. When we want a to range over the support of some
non-empty definable predicate we use the following shorthand

Vez.9(7.2) == Vz.((Swp(G(7.2)) A 320(7.2)) V ¢(7.2) ).

Proposition

If G and ¢ are Lk-formulae, D is a K-database, and « is an assignment, we have that

Vex.o(x)(D,a) = (D, a(a/x)).

aED:G(gjtl)era/x));«éO v



Rewritability theorem
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Rewritability theorem

Theorem ([Koutris and Wijsen, 2017])

Let g be a self-join free conjunctive query and ¥ a set of key constraints, one for each
relation in q. The attack graph of q is acyclic if and only if CA(q,X) is FO-rewritable.

Theorem

Let K be a naturally ordered positive semiring, q be a self-join free conjunctive query,
and ¥ a set of key constraints, one for each relation in q. The attack graph of q is
acyclic if and only if mCAk(q,X) is Lk-rewritable.

The rewriting of mCA k(q) is defined recursively starting from an un-attacked atom R:

IV r(y.5Zx- mCAk(qlyx, Z] \ R(Y: 2)).
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Why is rewriting in Lk a nice thing to have?

Data complexity of FO is DLOGTIME-uniform AC®. How about £x?

The correct model of computation to relate L is a variant of arithmetic AC® with
gates corresponding to semiring operations!

> The model needs to be able to take semiring values as input.

P It needs to have gates for evaluating £x-formulae compositionally:

» + -gate for disjunction (fan-in 2),

» x -gate for conjunction (fan-in 2),

> + -gate for existential quantifier (unbounded fan-in),
» min -gate for V (unbounded fan-in),

» Supp-gate (fan-in 1).
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K-circuits

Definition
Let K be a naturally ordered positive semiring.
A K-circuit is a finite simple directed acyclic graph of labeled nodes (i.e., gates) s.t.

there are gates labeled input, with indegree 0,
there are gates labeled constant, with indegree 0 and labeled with a ¢ € K,

there are gates labeled addition, multiplication, min, and Supp,

vvyyypwy

exactly one gate of outdegree 0 is additionally labeled output,
P input gates are ordered.

Addition, multiplication, and min gates have arbitrary in-degree.
Depth of a circuit is the length of the longest path from an input to an output gate.
Size of a circuit is the number of gates in it.

A circuit computes functions of type K" — K.
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» To consider (Cp)nen as an algorithm, n— C, should be computable.
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Circuit families

> A K-circuit C, computes a function f,: K" — K, for some n € N.
» A family of K-circuits (Cp)nen computes a function fz: K* — K.
» To consider (Cp)nen as an algorithm, n— C, should be computable.

» DLOGTIME-uniform AC% (4, X2, min, Supp)

» (Cp)nen is a family of constant depth polynomial size (in n) circuits,
» indegree of x-gates is 2,
» there is a DLOGTIME algorithm that describes C,, given n.

Fact
DLOGTIME-uniform AC%(+, x2, min, Supp) is DLOGTIME-uniform ACP.

Proposition
Data complexity of Ly is in DLOGTIME-uniform AC%(+, x2, min, Supp).
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Why are ACY(+, x5, min, Supp)-circuits nice?

> AC2(+, X7) circuit families compute polynomial functions of constant degree.
> AC%(4, X2, min)-circuits add polynomial many min comparisons between values.
> Addition of Supp gates adds polynomial many comparisons between values and 0.

> Assuming a < b comparisons between semiring values can be checked effectively,
AC(,)((—i—, X2, min, Supp) families compute in a strong sense polynomial functions.

Theorem (Recap)

Let K be a naturally ordered positive semiring, q be a self-join free conjunctive query,
and X a set of key constraints, one for each relation in q. The attack graph of q is
acyclic if and only if mCAk(q,X) is Ly-rewritable.

Data complexity of L is in DLOGTIME-uniform AC%(+, x2, min, Supp), which is
computationally nice.



Descriptive complexity theory

Logic and Computation Through the Lens of Semirings (by Helsinki + Hannover, '25)
T. Barlag, N. Frohlich, T. Hankala, M. Hannula, M. Hirvonen, V. Holzapfel, J.Kontinen, A. Meier, L. Strieker.
» For positive commutative semirings K and the BSS-model of computation:

» Data complexity of FOx is in Px.
» Model checking for FOx is in PSPACEk.

» For positive commutative semirings K and ordered structures:
» FOk(Arbk) = FAC% (non-uniform).
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