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Logics with team semantics

Expressive logical formalism for expressing properties of data:

▶ Notions such as functional dependence, inclusion dependence, and independence
between attributes are taken as atomic building blocks of a logic.

▶ Logics in this setting are high in expressiveness: e.g, equi-expressive with
existential second-order logic, i.e. expresses properties of data that are in NP.

Team = set of first-order assignments (i.e., records).

Employee Research Group Salary LineManager

Alice TCS 50k Bob
Bob ML 60k David
Carol Security 60k Carol
David ML 80k Carol

▶ Atom dep(Employee, Salary) (reads: Employee determines Salary)

▶ Atom LineManager ⊆ Employee (reads: every LineManager is an Employee)
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Logics with team semantics

More complex properties of data:

▶ ∃ResearchTheme
(
dep(ResearchGroup, ResearchTheme) ∧

dep(ResearchTheme, LineManager)
)

“The data can be extended with values to a new attribute ResearchTheme such
the functional dependences mentioned hold”.
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(
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dep(ResearchTheme, LineManager)
)

“The data can be extended with values to a new attribute ResearchTheme such
the functional dependences mentioned hold”.
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“The data can be decomposed into two parts which both satisfy the dependency
dep(ResearchGroup, Salary)”
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Multiteam semantics

Multiteam semantics generalises teams to multisets of data:
▶ Qualitative dependences such as inclusion dependence and independence.
▶ Quantitative dependences such as marginal multiplicity identity and probabilistic

independence between attributes.
▶ Expressivity relates to quantitative variants of existential second-order logic.

Multiteam = bag of first-order assignments (i.e., records).

ResearchGroup Salary LineManager Multiplicity

TCS 50k Bob 3
ML 60k David 2

Security 60k Carol 2
ML 80k Carol 1

▶ Atom ResearchGroup ⊥⊥ Salary

(reads: ResearchGroup and Salary are independent of each other)
▶ Atom ResearchGroup ≈∗ LineManager

(reads: ResearchGroup and LineManager have the same shape of distribution)
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Probabilistic team semantics

Generalises teams to discrete distributions of data:
▶ Qualitative dependences such as inclusion dependence and independence.
▶ Quantitative dependences such as probabilistic independence.
▶ Expressivity relates to quantitative variants of existential second-order logic.

Probabilistic team = discrete real valued (distributions) of first-order assignments.

Shape Mass Volume weight

Sphere 50kg 10cm3 2/10

Sphere 60kg 20cm3 3/7

Cube 10kg 30cm3 4/7

Torus 50kg 10cm3 1/7

▶ Atom Shape ⊥⊥ Mass

(reads: in the experiment Shape and Mass are picked independently)
▶ Formula dep(Volume, Mass) ∨ dep(Volume, Mass)

(reads: There are at most two ways in the data how Volume fuctionally
determines Mass.
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Unifying approach to team semantics

▶ Goal: Give a general recipe for different flavours of team semantics.
▶ What do we need?

▶ Abstraction of a team.
▶ A uniform way to define semantics of connectives.
▶ A uniform way to define semantics of atoms.
▶ A way of obtaining team, multi team, and probabilistic team semantics as instances!

▶ Solution: Define notions with logical formulae that are interpreted as algebraic
expressions over some semiring!
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Unifying approach to team semantics: math definitions

▶ Examples of semirings:
▶ The Boolean semiring B = (B,∨,∧, 0, 1).
▶ The semiring of natural numbers N = (N,+, ·, 0, 1).
▶ The probability semiring R≥0 = (R≥0,+, ·, 0, 1).
▶ The semiring of multivariate polynomials N[X ] = (N[X ],+, ·, 0, 1).

▶ (K ,+, 0) is a monoid, if + is associative, and 0 is an identity element.
▶ Semiring is a structure (K ,+, ·, 0, 1), where

▶ + and · are binary operations on K ,
▶ (K ,+, 0) is a commutative monoid with identity element 0,
▶ (K , ·, 1) is a monoid with identity element 1,
▶ · left and right distributes over +,
▶ x · 0 = 0 = 0 · x , for all x ∈ K .

▶ Sometimes we need to assume that K is a positive
(no zero divisors and a+ b = 0 implies a = b = 0)

▶ Often we need to assume that K is commutative.
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K-teams

Given a semiring (K ,+, ·, 0, 1), a finite set of first-order variables VAR, and a
first-order structure A with domain A

▶ A K -team maps every assignment s : VAR → A to a value in the semiring.
(It is a function X : AVAR → K )

▶ The sum X + Y of two K-teams is defined such that s 7→ X (s) + Y (s).

▶ For the Boolean semiring (B,∨,∧, 0, 1), we obtain set-based teams.
Addition corresponds to set union (via characteristic functions of sets).

▶ A marginalisation X ↾ VAR ′ is defined such that

s ′ 7→
∑

(s↾VAR′)=s′

X (s)

for s : VAR ′ → A.

▶ For the semiring of natural numbers, we obtain multiteams.
Addition corresponds to disjoint union of multisets and marginalisation is standard.
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Basic results on team, multiteams, and probabilistic teams
▶ Team semantics: empty team property

A |=∅ φ, for any formula φ.

▶ Multiteam semantics: closure under scalar multiplication of teams

A |=X φ implies A |=c·X φ, for any c ∈ N.

▶ Probabilistic (real-weighted) team semantics: distribution invariance

A |=X φ if and only if A |=Y φ, provided that dist(X)=dist(Y).

▶ General notion: If X is a K -team, then for each c ∈ K

A |=X φ implies A |=c·X φ.

▶ The stronger results for the probabilistic semiring follows via the existence of
multiplicative inverses.
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Basic results on team, multiteams, and probabilistic teams
▶ (Qualitative) inclusion logic FO(⊆) is closed under unions

A |=X φ & A |=Y φ implies A |=X∪Y φ

▶ (Quantitative) real-weighted/multiteam inclusion logic FO(≤) is closed under
disjoint unions

A |=X φ & A |=Y φ implies A |=X⊎Y φ.

▶ (Quantitative) Probabilistic inclusion logic FO(≤) is closed under scaled unions

A |=X φ & A |=Y φ implies A |=α·X⊎(1−α)Y φ, for all α ∈ [0, 1].

▶ General notion: Closure under addition. If X is a K -team

A |=X φ & A |=Y φ implies A |=X+Y φ,

where + inherits its semantics from K .



Basic results on team, multiteams, and probabilistic teams
▶ (Qualitative) inclusion logic FO(⊆) is closed under unions

A |=X φ & A |=Y φ implies A |=X∪Y φ

▶ (Quantitative) real-weighted/multiteam inclusion logic FO(≤) is closed under
disjoint unions

A |=X φ & A |=Y φ implies A |=X⊎Y φ.

▶ (Quantitative) Probabilistic inclusion logic FO(≤) is closed under scaled unions

A |=X φ & A |=Y φ implies A |=α·X⊎(1−α)Y φ, for all α ∈ [0, 1].

▶ General notion: Closure under addition. If X is a K -team

A |=X φ & A |=Y φ implies A |=X+Y φ,

where + inherits its semantics from K .



What we have seen so far?

▶ The concept of a K -team and some hints to K -team semantics.
▶ How teams, multiteams, and probablistic teams arise from K -teams.

▶ Semantics for the disjuctions arises from addition:
A |=X φ ∨ ψ iff A |=Y φ and A |=Z φ, for some Y and Z s.t X = Y + Z .

▶ Semantics for existential quantifiers arises from marginalisations.

▶ How some basic results for different team semantics variants arise from K -teams.
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Logic for defining atoms
We extend semiring semantics for first-order logic (Grädel and Tannen 2017) with
formula (in)equalities.

▶ The value of a formula is an element of a semiring.

▶ The value can denote a truth value, a number distinct of proofs, or something else.

▶ The value can be a multivariate polynomial carrying some provenance information.
▶ How the value of a formulae is computed?

▶ For literals the value is given by a K -interpretation function.
▶ For disjunction, the value is the sum of the values of the disjuncts.
▶ For conjunction, the value is the product of the values of the conjuncts.
▶ For the quantifiers, the value is a sum or product of all the possible interpretations of

the quantified variable
▶ For formula (in)equalities

Jϕ ∗ ψK =

{
1 if JϕK ∗ JψK
0 otherwise,

where ∗ ∈ {=, ̸=,≤, ̸≤}.
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Logical definitions of atoms

▶ Consider an inclusion atom x⃗i ≤ x⃗j .

▶ The defining formula is of the form ∀u⃗
(
θi⃗ (u⃗) ≤ θj⃗(u⃗)

)
.

▶ The formula θi⃗ extracts the marginalisation for x⃗i from the K -team.
▶ On the Boolean semiring the above yields the (qualitative) inclusion atoms.
▶ On the probabilistic semiring we obtain the marginal distribution identity atoms.

▶ Consider an independence atom x⃗j ⊥⊥x⃗i x⃗k .

▶ Defining formula: ∀u⃗v⃗ w⃗
((
θi⃗ ,⃗j(u⃗, v⃗) ∧ θi⃗,k⃗(u⃗, w⃗)

)
=

(
θi⃗ (u⃗) ∧ θi⃗ ,⃗j,k⃗(u⃗, v⃗ , w⃗)

))
▶ The formulae θ extract the relevant marginalisation from the K -team.
▶ The above is similar to how the probabilistic conditional independence y ⊥⊥x z could

be written in probability theory:
P(xy = ab) · P(xz = ac) = P(xyz = abc) · P(x = a), for all values a,b,c

▶ On the Boolean semiring the above yields the (qualitative) independence atoms.
▶ On the probabilistic semiring we obtain the probabilistic independence atoms.
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RECAP

▶ Goal: Give a general recipe for different flavours of team semantics.
▶ What do we need?

▶ Abstraction of a team.
▶ A uniform way to define semantics of connectives.
▶ A uniform way to define semantics of atoms.
▶ A way of obtaining team, multi team, and probabilistic team semantics as instances!

▶ Solution: Define notions with logical formulae that are interpreted as algebraic
expressions over some semiring!



Future and ongoing work

▶ Database repairs
▶ A logic where the values of formulae indicate how far the formula is from being true.
▶ The above is used to define various repair notions logically.
▶ A fine-grained framework for database repairs, ArXiv 2023 (with Nina Pardal)

https://doi.org/10.48550/arXiv.2306.15516

▶ What does the semiring approach reveal about axiomatisations?

▶ Study of provenance using multivariate polynomials as annotations.

▶ Counting proofs in team semantics setting (initated in Haak et. al. 2019).

▶ Complexity theoretic issues related to BSS-machines and the existential first-order
theory of K .

https://doi.org/10.48550/arXiv.2306.15516
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