Temporal Team Semantics Revisited

Jens Oliver Gutsfeld! Arne Meier?> Christoph Ohrem! Jonni Virtema?

1 Universitat Miinster, Germany
2 Leibniz Universitit Hannover, Germany

9.8.21 — LoDE'21

Core of Team Semantics

» In most studied logics formulae are evaluated in a single state of affairs.
Eg.,
P a first-order assignment in first-order logic,
P a propositional assignment in propositional logic,
» a possible world of a Kripke structure in modal logic.

Core of Team Semantics

» In most studied logics formulae are evaluated in a single state of affairs.
Eg.,
P a first-order assignment in first-order logic,
P a propositional assignment in propositional logic,
» a possible world of a Kripke structure in modal logic.
» In team semantics sets of states of affairs are considered.
Eg.,
P a set of first-order assignments in first-order logic,

P a set of propositional assignments in propositional logic,
P a set of possible worlds of a Kripke structure in modal logic.

> These sets of things are called teams.

Team Semantics: Historical Picture

1960 Y 1990 2000 2005 2010 2015 2020

3/22

Team semantics for temporal logics

> A trace over AP is an infinite sequence from (24F)~.

> Trace can be seen to model an execution of a system over time.

» Important logics for trace properties are, e.g., LTL, CTL, pu-calculus.

» The system will terminate eventually.
» Every request is eventually granted.
» The system will terminate in bounded time.

Team semantics for temporal logics

> A trace over AP is an infinite sequence from (24F)~.

> Trace can be seen to model an execution of a system over time.

» Important logics for trace properties are, e.g., LTL, CTL, pu-calculus.

» The system will terminate eventually.

» Every request is eventually granted.

» The system will terminate in bounded time.
> A trace property is a property of traces (the set of satisfying traces) vs.

a hyperproperty is a property of sets of traces (analogous to a set of teams).

» Logics for hyperproperties: HyperLTL, HyperCTL, TeamLTL, etc.

» Termination in bounded time is in TeamLTL, but not in HyperLTL.

» Ongoing work on TeamLTL variants in Hannover, Helsinki, Miinster, and
Saarbriicken.

LTL, HyperLTL, and TeamLTL

» In LTL the satisfying object is a trace.

pu=plop|(eVe)| Xe|eUe

» In HyperLTL the satisfying object is a set of traces and a trace assignment.

@ = 3mp | Vrp [
Yu=po || (P V) | XY | pUY

» In TeamLTL the satisfying object is a set of traces. We use team semantics.
pu=plopl(eVe)l(ene) | Xe|eU|pWe

+ atomic statements of dependence (dependence and inclusion atoms etc.)
+ additional connectives (Boolean disjunction, contradictory negation, etc.)

Examples: HyperLTL vs. synchronous TeamLTL

» There is a timepoint (common for all traces) after which a does not occur.
Not expressible in HyperLTL, but is in HyperQPTL.

IpVrFp A G(p — G—ar)

Expressible in synchronous TeamLTL: FG —a

Examples: HyperLTL vs. synchronous TeamLTL

» There is a timepoint (common for all traces) after which a does not occur.
Not expressible in HyperLTL, but is in HyperQPTL.

IpVrFp A G(p — G—ar)

Expressible in synchronous TeamLTL: FG —a

» Depending on an unknown input, execution traces either agree on a or on b.
Expressible in HyperLTL with three trace quantifiers:

my IV G(ax, < ax) V G(bx, <> br).

Expressible in synchronous TeamLTL: G(a @ —a) V G(b @ —b).

Motivation of the current work

vvyYyy

recent interest into temporal team semantics [KMVZ18, Liick20, VHFKY21]
develop purely modal logics for hyperproperties
investigate connections between HyperLTL variants and team semantics

study different aspects of asynchronicity as most works on TeamLTL have
concentrated on the synchronous semantics.

Kripke structures and traces

A rooted Kripke structure is 4-tuple (W, R, V/, r), where
» W is a (finite) set of states of the structure.
» the element r € W is the root of the structure.
» R is a right-total binary relation on W (i.e, Vx € W3y € W s.t. xRy).
> V: W — 2P is an evaluation function.

A trace t over K is an infinite sequence s.t t[0] = r and t[/]Rt[i + 1], for i € N.
(t[i] is the ith element of the sequence t.)

Time evaluation functions

Definition
Given a (possibly infinite) set of traces T over some common Kripke structure, a time
evaluation function (tef for short) for T is a function

T:NxT—=N

that given a trace t € T and a value of a the global clock i € N outputs the value
7(i, t) of the local clock of trace t at global time i.

If 7 is a tef and k € N a natural number, then 7[k, 0] is the k-shifted tef defined by
putting 7[k, co|(i, t) == 7(i + k,t), for everty t € T and j € N.

Note: there exists a notion of trajectory for hyperproperties [BCBFS21]

Temporal teams

Definition
A temporal team is a tuple (T,7), where T is a set of traces over some common
Kripke structure and 7 is a time evaluation function for T. A pair (T,7) is called a

stuttering temporal team, if (S, 7) is a temporal team for some T C S.

Temporal team semantics

Definition
Let (T,7) be a stuttering temporal team over a Kripke structure (W, R, V,r).

T)EP iff Vte T:pe V(t[0]) (T,7)=—p iff VteT:pée V(0]
JEoAy iff (T,r)E¢and(T,7)Ev (T EXe iff (T, 7[l,oq]) e
YEoVY iff (Ti,7)E¢and (T2, 7) E 9, forsome Ty, Tost. iUT, =T
)E Uy iff JkeNst (T,7[k,o0]) EvandVm:0< m< k= (T,7[m, x]) E ¢
) E oWy iff Yk e N: (T,7[k,00]) E¢pordImst. m<kand (T,7[m,]) =

Note: If 7 is the synchronous time evaluation function (i.e., VtVi: 7(t,i) = i), then
the above is exactly the semantics for synchronous TeamLTL as defined in [KMVZ18].

Properties of tefs

* marks optional properties
Strict Monotonicity: Vi : 7(i) < 7(i + 1) (wrt. canonical order of tuples)
Stepwise: ViVt : 7(i+1,t) € {r(i,t), (i, t) + 1}.
Whenever a local clock ticks it ticks exactly one step.
Important to differentiate neXt operator from Future.

*Fairness: Vivtdj: 7(j,t) > i.
*Non-Parallelism: Vi:i=73,7(i,t)
*Synchronousity: (i, t) = 7(i, t') for all i,t,t.

An initial example

The formula XX=p is not downward closed due to strict monotonicity!

P
1
1
1
1

1
1
1
.
1 ' N
N BN)
N

B S
“ e« 11

Quantification of tefs

Definition
Fix a set AP of atomic propositions. The set of formulae of TeamLTL (over AP) is
generated by the following grammar:

pu=plopleVeloAp | Xe|eUp | pWe

where p € AP.
The logical constants T, L and connectives —, <> are defined as usual (e.g.,
1 :=pA-p), and F := TU¢p and G¢ := ¢W_L.

Quantification of tefs

Definition
Fix a set AP of atomic propositions. The set of formulae of TeamCTL* (over AP) is
generated by the following grammar:

pu=plapleVelenp| Xe|Up | oWe | 3]V

where p € AP and 3,V are tef quantifiers.
The logical constants T, L and connectives —, <+ are defined as usual (e.g.,
1 :=pA-p), and Fp := TU¢ and G¢ := pW_L.

Note: The naming of above logics are work in progress.

Quantification of tefs

Definition
Fix a set AP of atomic propositions. The set of formulae of TeamCTL (over AP) is
generated by the following grammar:

pu=plopleVeleAe|IXe|TpUp [FpWe | VXe [VU | VoW

where p € AP.
The logical constants T, L and connectives —, <+ are defined as usual (e.g.,
1 :=pA-p), and Fp := TU¢ and G¢ := pW_L.

Note: The naming of above logics are work in progress.

TeamCTL can simulate synch-TeamLTL: the existential fragment

Ysynch = (P A X37p) @ (—p A X3p),
wsynch (P A XH"P) (_‘P A Xgp)
Yeynch = (P AXy(=pV p € =p)) V (-p AXy(pV p C —p)),

Then: G3tsynch states that on every trace p flips from each time step to next one.
without @: p A Gwpsynch and p A Gwﬁswch

with fairness: p A Ga(/)s nch

note: formulas needed for SAT, for MC encode alternation of p into model.

TeamCTL can simulate synch-TeamLTL: the existential fragment [l

Now turn towards the formulas for the respective operators:

(Fe)" = [dep(p)Usp A dep(p)]
(Gp)" = [p A dep(p)W3L]

(Xg)* = X3(dep(p) A)

(¢U8)" = [A dep(p)U36 A dep(p)]
(W) = [A dep(p)W36 A dep(p)]

x

The translation then is
() N0,
where 0 is any of the formulas G39synch, p A vagynch, or pA ngp;ynch (if fairness for

time evaluation is stipulated), and where for Boolean connectives the translation is the
identity.

2-Counter-Machines

Definition
A non-deterministic 2-counter machine M consists of a list | of n instructions that
manipulate two counters C; and C,. All instructions are of the following forms:

> CF goto {j1,/2}, C; goto {j1,/2}, if C; =0 goto jielse goto j,
where a € {/,r}, 0 < ji,/o < n.
» configuration: tuple (i,j, k), where 0 </ < n is the next instruction to be
executed, and j, k € N are the current values of the counters C; and C,.

» computation: infinite sequence of consecutive configurations starting from the
initial configuration (0,0, 0).

» computation b-recurring if the instruction labelled b occurs infinitely often in it.

Theorem (Alur & Henzinger 1994)

Deciding whether a given non-deterministic 2-counter machine has a b-recurring
computation for a given b is ¥1-complete.

TeamCTL(®) is highly undecidable

Theorem
Model checking for TeamCTL(®) is ¥1-hard.

Proof Idea: reduce existence of b-recurring computation of given 2-counter machine M
and instruction label b to model checking problem of TeamCTL(®).

Using traces to simulate the counters

vVvYyyvyy

use two traces ty 1, ty> for counter C; and two traces t 1, t, > for counter C,

each t € {ty1,ty2,tr 1, tr2} has p; that is globally true in each state of trace
trace-pairs simulate incrementing, resp., decrementing value of respective counter
counter-value n € N simulated via sequence of n states containing c.

between such sequence use separation symbol #

c c c # c c c c

t1ir - > —0—0—0 —0 —0 0 0 0 0
c c # c c c

t: - —>@—@—@ o —0—0 0 o -

Use TeamCTL-formulas to express the details

Excerpt of details:
» label b reoccurs infinitely often: GyF3b

> Increment Cp: —~#Ugynen (c A (Pt AX3=€) V (P, A X3C)>

» Decrement Cp: ~#Ugynch (c A (pts,2 A ch) \Y, (pts’1 A Xgﬁc)>
» Stay Cy: _\#Usynch(C/\Xa_'C)
» instruction formulas:

i Cs+ goto {ja.j,}: (Cs'inc A (pts,1 v pts,Q)) v (C§'Stay A (pfg,l N pt§,2))
it C; goto {J,j'}: (cs-dec A (pe, 1 V pe,,)) V (cs-stay A (pe,, V prs,))
i if Cs =0 goto J, else goto j':

(Pros A ((# AX(~€ A) @ (# AXa(e AJ))) V Pray V Py V s

Summary

» General framework for temporal team semantics
» We can combine asynchronous and synchronous tefs
» We can embed synchronous TeamLTL

» highly undecidable model-checking problem

Summary

» General framework for temporal team semantics
» We can combine asynchronous and synchronous tefs
» We can embed synchronous TeamLTL

» highly undecidable model-checking problem

Current and future directions
» Indentification of decidable fragments and variants

» Consider tefs also as inputs given in some finite way.

Summary

» General framework for temporal team semantics
» We can combine asynchronous and synchronous tefs
» We can embed synchronous TeamLTL

» highly undecidable model-checking problem

Current and future directions
» Indentification of decidable fragments and variants

» Consider tefs also as inputs given in some finite way.

Thank you!

Advert

| will start a lecturer position in the University of Sheffield (UK) in September.
Tentative Open Positions:

» Postdoc position for 26 months. Probabilistic team semantics, descriptive
complexity of BSS-computation, connections to quantum information theory.
International call, ASAP. www.virtema.fi/dfg

» Fully funded PhD position for 3.5 years in Sheffield.

UK students only. Starting in the academic year 2021 or 2022.

More details: jonni.virtema@gmail.com

www.virtema.fi/dfg
jonni.virtema@gmail.com

