
Temporal Team Semantics Revisited

Jens Oliver Gutsfeld1 Arne Meier2 Christoph Ohrem1 Jonni Virtema2

1 Universität Münster, Germany
2 Leibniz Universität Hannover, Germany

9.8.21 — LoDE’21

2/22

Core of Team Semantics

I In most studied logics formulae are evaluated in a single state of affairs.

E.g.,
I a first-order assignment in first-order logic,
I a propositional assignment in propositional logic,
I a possible world of a Kripke structure in modal logic.

I In team semantics sets of states of affairs are considered.

E.g.,
I a set of first-order assignments in first-order logic,
I a set of propositional assignments in propositional logic,
I a set of possible worlds of a Kripke structure in modal logic.

I These sets of things are called teams.

2/22

Core of Team Semantics

I In most studied logics formulae are evaluated in a single state of affairs.

E.g.,
I a first-order assignment in first-order logic,
I a propositional assignment in propositional logic,
I a possible world of a Kripke structure in modal logic.

I In team semantics sets of states of affairs are considered.

E.g.,
I a set of first-order assignments in first-order logic,
I a set of propositional assignments in propositional logic,
I a set of possible worlds of a Kripke structure in modal logic.

I These sets of things are called teams.

3/22

Team Semantics: Historical Picture

1960

Bra
nch

in
g

Q
uan

tifi
er

s H
en

ki
n

1990

IF
-lo

gi
c

H
in

tik
ka

, San
du

2000 2005 2010 2015 2020

Com
p.

Sem
an

tic
s

fo
r IF

H
odge

s

IF
m

odal
lo

gi
c

Tulen
heim

o

D
ep

en
den

ce
Log

ic
Vää

nän
en

M
odal

D
ep

en
den

ce
Log

ic

Vää
nän

en

In
clu

sio
n

&
Exc

lu
sio

n
Log

ic
Gal

lia
ni

In
dep

en
den

ce
Log

ic
Grä

del,
Vää

nän
en

M
odal

Tea
m

Log
ic

M
ülle

r

Tea
m

CTL

K
re

bs
et

al
.

M
ulti

te
am

s
D

ura
nd

et
al

.

Pol
yt

ea
m

s

H
an

nula
et

al
.

Pro
bab

ili
st

ic
Tea

m
s

D
ura

nd
et

al
.

Tea
m

LT
L

K
re

bs
et

al
.

4/22

Team semantics for temporal logics

I A trace over AP is an infinite sequence from (2AP)ω.

I Trace can be seen to model an execution of a system over time.
I Important logics for trace properties are, e.g., LTL, CTL, µ-calculus.

I The system will terminate eventually.
I Every request is eventually granted.
I The system will terminate in bounded time.

I A trace property is a property of traces (the set of satisfying traces) vs.
a hyperproperty is a property of sets of traces (analogous to a set of teams).

I Logics for hyperproperties: HyperLTL, HyperCTL, TeamLTL, etc.
I Termination in bounded time is in TeamLTL, but not in HyperLTL.

I Ongoing work on TeamLTL variants in Hannover, Helsinki, Münster, and
Saarbrücken.

4/22

Team semantics for temporal logics

I A trace over AP is an infinite sequence from (2AP)ω.

I Trace can be seen to model an execution of a system over time.
I Important logics for trace properties are, e.g., LTL, CTL, µ-calculus.

I The system will terminate eventually.
I Every request is eventually granted.
I The system will terminate in bounded time.

I A trace property is a property of traces (the set of satisfying traces) vs.
a hyperproperty is a property of sets of traces (analogous to a set of teams).

I Logics for hyperproperties: HyperLTL, HyperCTL, TeamLTL, etc.
I Termination in bounded time is in TeamLTL, but not in HyperLTL.

I Ongoing work on TeamLTL variants in Hannover, Helsinki, Münster, and
Saarbrücken.

5/22

LTL, HyperLTL, and TeamLTL

I In LTL the satisfying object is a trace.

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | Xϕ | ϕUϕ

I In HyperLTL the satisfying object is a set of traces and a trace assignment.

ϕ ::= ∃πϕ | ∀πϕ | ψ
ψ ::= pπ | ¬ψ | (ψ ∨ ψ) | Xψ | ψUψ

I In TeamLTL the satisfying object is a set of traces. We use team semantics.

ϕ ::= p | ¬p | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | Xϕ | ϕU | ϕWϕ

+ atomic statements of dependence (dependence and inclusion atoms etc.)
+ additional connectives (Boolean disjunction, contradictory negation, etc.)

6/22

Examples: HyperLTL vs. synchronous TeamLTL

I There is a timepoint (common for all traces) after which a does not occur.
Not expressible in HyperLTL, but is in HyperQPTL.

∃p ∀π Fp ∧ G(p → G¬aπ)

Expressible in synchronous TeamLTL: FG¬a

I Depending on an unknown input, execution traces either agree on a or on b.
Expressible in HyperLTL with three trace quantifiers:

∃π1 ∃π2 ∀π G(aπ1 ↔ aπ) ∨ G(bπ2 ↔ bπ).

Expressible in synchronous TeamLTL: G(a 6 ¬a) ∨ G(b 6 ¬b).

6/22

Examples: HyperLTL vs. synchronous TeamLTL

I There is a timepoint (common for all traces) after which a does not occur.
Not expressible in HyperLTL, but is in HyperQPTL.

∃p ∀π Fp ∧ G(p → G¬aπ)

Expressible in synchronous TeamLTL: FG¬a
I Depending on an unknown input, execution traces either agree on a or on b.

Expressible in HyperLTL with three trace quantifiers:

∃π1 ∃π2 ∀π G(aπ1 ↔ aπ) ∨ G(bπ2 ↔ bπ).

Expressible in synchronous TeamLTL: G(a 6 ¬a) ∨ G(b 6 ¬b).

7/22

Motivation of the current work

I recent interest into temporal team semantics [KMVZ18, Lück20, VHFKY21]

I develop purely modal logics for hyperproperties

I investigate connections between HyperLTL variants and team semantics

I study different aspects of asynchronicity as most works on TeamLTL have
concentrated on the synchronous semantics.

8/22

Kripke structures and traces

A rooted Kripke structure is 4-tuple (W ,R,V , r), where

I W is a (finite) set of states of the structure.

I the element r ∈W is the root of the structure.

I R is a right-total binary relation on W (i.e, ∀x ∈W ∃y ∈W s.t. xRy).

I V : W → 2AP is an evaluation function.

A trace t over K is an infinite sequence s.t t[0] = r and t[i]Rt[i + 1], for i ∈ N.
(t[i] is the ith element of the sequence t.)

9/22

Time evaluation functions

Definition
Given a (possibly infinite) set of traces T over some common Kripke structure, a time
evaluation function (tef for short) for T is a function

τ : N× T → N

that given a trace t ∈ T and a value of a the global clock i ∈ N outputs the value
τ(i , t) of the local clock of trace t at global time i .

If τ is a tef and k ∈ N a natural number, then τ [k ,∞] is the k-shifted tef defined by
putting τ [k,∞](i , t) := τ(i + k, t), for everty t ∈ T and i ∈ N.

Note: there exists a notion of trajectory for hyperproperties [BCBFS21]

10/22

Temporal teams

Definition
A temporal team is a tuple (T , τ), where T is a set of traces over some common
Kripke structure and τ is a time evaluation function for T . A pair (T , τ) is called a
stuttering temporal team, if (S , τ) is a temporal team for some T ⊆ S .

11/22

Temporal team semantics

Definition
Let (T , τ) be a stuttering temporal team over a Kripke structure (W ,R,V , r).

(T , τ) |= p iff ∀t ∈ T : p ∈ V (t[0]) (T , τ) |= ¬p iff ∀t ∈ T : p /∈ V (t[0])

(T , τ) |= φ ∧ ψ iff (T , τ) |= φ and (T , τ) |= ψ (T , i) |= Xϕ iff (T , τ [1,∞]) |= ϕ

(T , τ) |= φ ∨ ψ iff (T1, τ) |= φ and (T2, τ) |= ψ, for some T1,T2 s.t. T1 ∪ T2 = T

(T , τ) |= φUψ iff ∃k ∈ N s.t. (T , τ [k ,∞]) |= ψ and ∀m : 0 ≤ m < k ⇒ (T , τ [m,∞]) |= φ

(T , τ) |= φWψ iff ∀k ∈ N : (T , τ [k ,∞]) |= φ or ∃m s.t. m ≤ k and (T , τ [m,∞]) |= ψ

Note: If τ is the synchronous time evaluation function (i.e., ∀t∀i : τ(t, i) = i), then
the above is exactly the semantics for synchronous TeamLTL as defined in [KMVZ18].

12/22

Properties of tefs

* marks optional properties

Strict Monotonicity: ∀i : τ(i) < τ(i + 1) (wrt. canonical order of tuples)

Stepwise: ∀i ∀t : τ(i + 1, t) ∈ {τ(i , t), τ(i , t) + 1}.
Whenever a local clock ticks it ticks exactly one step.
Important to differentiate neXt operator from Future.

*Fairness: ∀i ∀t∃j : τ(j , t) ≥ i .

*Non-Parallelism: ∀i : i =
∑

t τ(i , t)

*Synchronousity: τ(i , t) = τ(i , t ′) for all i , t, t ′.

13/22

An initial example

The formula XX¬p is not downward closed due to strict monotonicity!

pp p p p

14/22

Quantification of tefs

Definition
Fix a set AP of atomic propositions. The set of formulae of TeamLTL (over AP) is
generated by the following grammar:

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | ϕWϕ

where p ∈ AP.
The logical constants >,⊥ and connectives →,↔ are defined as usual (e.g.,
⊥ := p ∧ ¬p), and Fφ := >Uφ and Gφ := φW⊥.

14/22

Quantification of tefs

Definition
Fix a set AP of atomic propositions. The set of formulae of TeamCTL* (over AP) is
generated by the following grammar:

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | ϕWϕ | ∃ | ∀

where p ∈ AP and ∃,∀ are tef quantifiers.
The logical constants >,⊥ and connectives →,↔ are defined as usual (e.g.,
⊥ := p ∧ ¬p), and Fφ := >Uφ and Gφ := φW⊥.

Note: The naming of above logics are work in progress.

14/22

Quantification of tefs

Definition
Fix a set AP of atomic propositions. The set of formulae of TeamCTL (over AP) is
generated by the following grammar:

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃Xϕ | ∃ϕUϕ | ∃ϕWϕ | ∀Xϕ | ∀ϕUϕ | ∀ϕWϕ

where p ∈ AP.
The logical constants >,⊥ and connectives →,↔ are defined as usual (e.g.,
⊥ := p ∧ ¬p), and Fφ := >Uφ and Gφ := φW⊥.

Note: The naming of above logics are work in progress.

15/22

TeamCTL can simulate synch-TeamLTL: the existential fragment

ψsynch := (p ∧ X∃¬p) 6 (¬p ∧ X∃p),

ψ′synch := (p ∧ X∃¬p) ∨ (¬p ∧ X∃p),

ψ′′synch :=
(
p ∧ X∀(¬p ∨ p ⊆ ¬p)

)
∨
(
¬p ∧ X∀(p ∨ p ⊆ ¬p)

)
,

Then: G∃ψsynch states that on every trace p flips from each time step to next one.
without 6: p ∧ G∀ψ

′
synch and p ∧ G∀ψ

′′
synch

with fairness: p ∧ G∃ψ
′
synch

note: formulas needed for SAT, for MC encode alternation of p into model.

16/22

TeamCTL can simulate synch-TeamLTL: the existential fragment II

Now turn towards the formulas for the respective operators:

(Fϕ)∗ := [dep(p)U∃ϕ ∧ dep(p)]

(Gϕ)∗ := [ϕ ∧ dep(p)W∃⊥]

(Xϕ)∗ := X∃
(
dep(p) ∧ ϕ

)
(ϕUθ)∗ := [ϕ ∧ dep(p)U∃θ ∧ dep(p)]

(ϕWθ)∗ := [ϕ ∧ dep(p)W∃θ ∧ dep(p)]

The translation then is
ϕ 7→ (ϕ)∗ ∧ θ,

where θ is any of the formulas G∃ψsynch, p ∧ G∀ψ
′
synch, or p ∧ G∃ψ

′
synch (if fairness for

time evaluation is stipulated), and where for Boolean connectives the translation is the
identity.

17/22

2-Counter-Machines

Definition
A non-deterministic 2-counter machine M consists of a list I of n instructions that
manipulate two counters Cl and Cr . All instructions are of the following forms:

I C+
a goto {j1, j2}, C−a goto {j1, j2}, if Ca = 0 goto j1else goto j2,

where a ∈ {l , r}, 0 ≤ j1, j2 < n.

I configuration: tuple (i , j , k), where 0 ≤ i < n is the next instruction to be
executed, and j , k ∈ N are the current values of the counters Cl and Cr .

I computation: infinite sequence of consecutive configurations starting from the
initial configuration (0, 0, 0).

I computation b-recurring if the instruction labelled b occurs infinitely often in it.

Theorem (Alur & Henzinger 1994)

Deciding whether a given non-deterministic 2-counter machine has a b-recurring
computation for a given b is Σ1

1-complete.

18/22

TeamCTL(6) is highly undecidable

Theorem
Model checking for TeamCTL(6) is Σ1

1-hard.

Proof Idea: reduce existence of b-recurring computation of given 2-counter machine M
and instruction label b to model checking problem of TeamCTL(6).

19/22

Using traces to simulate the counters

I use two traces t`,1, t`,2 for counter C` and two traces tr ,1, tr ,2 for counter Cr

I each t ∈ {t`,1, t`,2, tr ,1, tr ,2} has pt that is globally true in each state of trace

I trace-pairs simulate incrementing, resp., decrementing value of respective counter

I counter-value n ∈ N simulated via sequence of n states containing c .

I between such sequence use separation symbol #

t`,1:
#c c c c c c c

t`,2:
#c c c c c

20/22

Use TeamCTL-formulas to express the details

Excerpt of details:

I label b reoccurs infinitely often: G∀F∃b

I Increment C`: ¬#Usynch

(
c ∧

(
pts,2 ∧ X∃¬c

)
∨
(
pts,1 ∧ X∃c

))
I Decrement C`: ¬#Usynch

(
c ∧

(
pts,2 ∧ X∃c

)
∨
(
pts,1 ∧ X∃¬c

))
I Stay C`: ¬#Usynch(c ∧ X∃¬c)

I instruction formulas:

i : C+
s goto {j , j ′}:

(
cs -inc ∧ (pts,1 ∨ pts,2)

)
∨
(
cs̄ -stay ∧ (pts̄,1 ∨ pts̄,2)

)
i : C−s goto {j , j ′}:

(
cs -dec ∧ (pts,1 ∨ pts,2)

)
∨
(
cs̄ -stay ∧ (pts̄,1 ∨ pts̄,2)

)
i : if Cs = 0 goto j , else goto j ′:

(pts,2 ∧
((

∧ X∃(¬c ∧ j)
)

6
(
∧ X∃(c ∧ j ′)

))
∨ pts,1 ∨ pts̄,1 ∨ pts̄,2

21/22

Summary

I General framework for temporal team semantics

I We can combine asynchronous and synchronous tefs

I We can embed synchronous TeamLTL

I highly undecidable model-checking problem

Current and future directions

I Indentification of decidable fragments and variants

I Consider tefs also as inputs given in some finite way.

Thank you!

21/22

Summary

I General framework for temporal team semantics

I We can combine asynchronous and synchronous tefs

I We can embed synchronous TeamLTL

I highly undecidable model-checking problem

Current and future directions

I Indentification of decidable fragments and variants

I Consider tefs also as inputs given in some finite way.

Thank you!

21/22

Summary

I General framework for temporal team semantics

I We can combine asynchronous and synchronous tefs

I We can embed synchronous TeamLTL

I highly undecidable model-checking problem

Current and future directions

I Indentification of decidable fragments and variants

I Consider tefs also as inputs given in some finite way.

Thank you!

22/22

Advert

I will start a lecturer position in the University of Sheffield (UK) in September.

Tentative Open Positions:

I Postdoc position for 26 months. Probabilistic team semantics, descriptive
complexity of BSS-computation, connections to quantum information theory.
International call, ASAP. www.virtema.fi/dfg

I Fully funded PhD position for 3.5 years in Sheffield.
UK students only. Starting in the academic year 2021 or 2022.

More details: jonni.virtema@gmail.com

www.virtema.fi/dfg
jonni.virtema@gmail.com

