Logics for the specification of hyperproperties
5th November 2024

Jonni Virtema
University of Sheffield, UK

Logics for verification and specification of concurrent systems

Basic setting:

e System (e.g., piece of software or hardware)

~ Kripke structure depicting the behaviour of the system
e A single run of the system

~> a trace generated by the Kripke structure

e A property of the system (e.g., every request is eventually granted)
~> a formula of some formal language expressing the property.

Logics for verification and specification of concurrent systems

Basic setting:
e System (e.g., piece of software or hardware)
~ Kripke structure depicting the behaviour of the system
e A single run of the system
~> a trace generated by the Kripke structure

e A property of the system (e.g., every request is eventually granted)
~> a formula of some formal language expressing the property.

Model checking:
e Check whether a given system satisfies a given specification.
SAT solving:

e Check whether a given specification (or collection of) can be realised.

Traceproperties and hyperproperties

Opening your office computer after holidays:

r(eady)
s | i '
| O -
|(oading) L(((Z)andr:;]cgt)ing) - r :
o O -
= | ¢ | ¢ r
s(hut) - .

Traceproperties hold in a system if each trace (in isolation) has the property:
e The computer will be eventually ready (or will be loading forever).
Hyperproperties are properties of sets of traces:
e The computer will be ready in bounded time.

Temporal Logic for traceproperties: Semantics by Example

oUyp: ¢ ¥ ¢ ¥

Temporal Logic for traceproperties: Semantics by Example

pUy:

12 12 12 ¥ ¥ ¥
o—0—0 00 —0

® ® ® P
o—0—0—0—0 0

[greenUblue]

Temporal Logic for traceproperties: Semantics by Example

pUy:

12 12 12 ¥ ¥ ¥
o—0—0 00 —0

® ® ® P
o—0—0—0—0 0

F(blue A Xgreen)

Temporal Logic for traceproperties: Semantics by Example

Gblue
oUyp: ¢ ¥ ¢ ¥

Temporal Logic for traceproperties: Semantics by Example

F(blue A Xgreen)
Fe: ¥ [greenUblue]

Gblue
oUyp: ¢ ¥ ¢ ¥

Examples for Interesting Properties in Temporal Logics

Mutal exclusion, i.e., no two processes can be in their critical section at the same time:
G(—p1 V —p2)
Starvation freeness, i.e., there is always a call to process p:
GFp
Progress, i.e., some property r which implies a future call of process p:

G(r — Fp)

Logics for traceproperties

e Linear-time temporal logic (LTL) is one of the most prominent logics for the
specification and verification of reactive and concurrent systems.

e Model checking tools like SPIN and NuSMV automatically verify whether a given
computer system is correct with respect to its LTL specification.

Logics for traceproperties

e Linear-time temporal logic (LTL) is one of the most prominent logics for the
specification and verification of reactive and concurrent systems.

e Model checking tools like SPIN and NuSMV automatically verify whether a given
computer system is correct with respect to its LTL specification.

e One reason for the success of LTL over first-order logic is that LTL is a purely
modal logic and thus has many desirable properties.
o LTL is decidable (PSPACE-comp. model checking and satisfiability) [SC85; CES86].
o FO?(<) and FO*(<) SAT are NEXPTIME-c. and non-elementary [EVWO02; Sto74] .

e Caveat: LTL can specify only traceproperties.

Recipe for logics for hyperproperties [Cla+14]

A logic for traceproperties ~» add trace quantifiers

In LTL the satisfying object is a trace: T =@ iff Vi€ T it =
pi=p|-p|(@Ve)| Xe|pUp

In HyperLTL the satisfying object is a set of traces and a trace assignment: Il =1 ¢

pu=3rp |Vrp | ¢
Yi=pr | | (Y V)| X | pUP

Recipe for logics for hyperproperties [Cla+14]

A logic for traceproperties ~» add trace quantifiers

In LTL the satisfying object is a trace: T =@ iff Vi€ T it =
pi=p|-p|(@Ve)| Xe|pUp

In HyperLTL the satisfying object is a set of traces and a trace assignment: Il =1 ¢

pu=3rp |Vrp | ¢
Yi=pr | | (Y V)| X | pUP

HyperQPTL extends HyperLTL by (uniform) quantification of propositions: Ipy, Vpy

Hyperlogics via quantifier extensions

e LTL, QPTL, CTL, etc. vs. HyperLTL, HyperQPTL, HyperCTL, etc.
are prominent logics for traceproperties vs. hyperproperties of systems
o Traceproperty: Each request is eventually granted (properties of traces)
o Hyperproperty: Non-inference (values of public outputs do not leak information
about confidential bits), (properties of sets of traces)

Hyperlogics via quantifier extensions

e LTL, QPTL, CTL, etc. vs. HyperLTL, HyperQPTL, HyperCTL, etc.
are prominent logics for traceproperties vs. hyperproperties of systems

o Traceproperty: Each request is eventually granted (properties of traces)
o Hyperproperty: Non-inference (values of public outputs do not leak information
about confidential bits), (properties of sets of traces)
e HyperlLogics are of high complexity or undecidable.
Not well suited for properties involving unbounded number of traces.

Properties of quantification based hyperproperties

e Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc.
e Retain some desirable properties of LTL, but are not purely modal logics
o Model checking for 3*HyperLTL and HyperLTL are PSPACE and non-elementary
[FH16; Cla+14].
o HyperLTL satisfiability is highly undecidable [For+21].
o HyperLTL formulae express properties expressible using fixed finite number of traces.

Properties of quantification based hyperproperties

Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc.

Retain some desirable properties of LTL, but are not purely modal logics
o Model checking for 3*HyperLTL and HyperLTL are PSPACE and non-elementary
[FH16; Cla+14].
o HyperLTL satisfiability is highly undecidable [For+21].
o HyperLTL formulae express properties expressible using fixed finite number of traces.

Bounded termination is not definable in HyperLTL (but is in HyperQPTL)

e Team semantics is a candidate for a purely modal logic without the above caveat.

LTL, HyperLTL, and

In LTL the satisfying object is a trace: T =@ iff Vi€ T it =

pri=plop|(pVe)| Xe|pUp

In HyperLTL the satisfying object is a set of traces and a trace assignment: Il =1 ¢

@ o= 3dmp [V [¢
Yi=pr | [(P VY) | X [YUY

In TeamLTL the satisfying object is a set of traces. We use team semantics: (T,/) E ¢
pu=plapl(eVe)l(eAe)| XeleU|eWe

+ new atomic statements (dependence and inclusion atoms: dep(p, q), p C §)
+ additional connectives (Boolean disjunction, contradictory negation, etc.)

Extensions are a well-defined way to delineate expressivity and complexity

Semantics of TeamLTL

Temporal team semantics is universal and synchronous

(T,)Epiff Vte T : pe ti] (T,i)E—p iff VEe T :pé¢&t[i

10

Semantics of TeamLTL

Temporal team semantics is universal and synchronous

(T,)Epiff Vte T : pe ti] (T,i)E—p iff VEe T :pé¢&t[i

(T,i) EFo iff (T,j)E¢forsomej>i (T,i)E Gy iff (T,j)Epforallj>i

10

Example: HyperQLTL

There is a timepoint (common for all traces) where a is false in each trace.
Not expressible in HyperLTL, but is in HyperQPTL.

11

Example: HyperQLTL

There is a timepoint (common for all traces) where a is false in each trace.
Not expressible in HyperLTL, but is in HyperQPTL.

IpVr G(p — XG—p) AF(p A —ax)

O00®
O0O®O
O®®O
O®O®

OO0
OO000O

11

Example: TeamLTL

There is a timepoint (common for all traces) where a is false in each trace.
Not expressible in HyperLTL, but is in HyperQPTL.

IpVr G(p — XG—p) A F(p A —ar)

Expressible in synchronous TeamLTL: F —a

O00®
O0O®O
O®®O
O®O®

OO0
O000O

12

Examples: Disjunction in TeamLTL

A trace-set T satisfies ¢ V 9 if it decomposed to sets T, and T, satisfying ¢ and .

(T, EeVY iff (T1,i) Evand (T, i) E 1, forsome iU T, =T
(T,)Eeny iff (T,i)Epand (T,i) E=¢

HyperLTL: TeamLTL:
Vv’ F((ax A arr) V (br A brr)) (Fa)V(Fb)
@-O-O-0-0-O-0O-0O— -~ O-O-@0-O-O0-O0-0O-0O—
@--O-O-O-0-0O~0O— ..@.....
0B 0e®O0. 20006000
O-O-O-O~~-CO-0~0O

13

Examples: Dependence atom in TeamLTL

Dependence atom dep(ps, .. ., pm, q) states that p1, ..., pm functionally determine q:

(T,i) = dep(pys. .-, pm q) iff Vi, t' € T
{p1,- s pmp 0 tli] = {p1,....pm} N] = {q}Ntli] = {q} N t[]

14

Examples: Dependence atom in TeamLTL

Dependence atom dep(ps, .. ., pm, q) states that p1, ..., pm functionally determine q:

(T,i) = dep(pys. .-, pm q) iff Vi, t' € T
{p1,- s pmp 0 tli] = {p1,....pm} N] = {q}Ntli] = {q} N t[]

(G dep(il,0)) V (G dep(i2,0))

Nondeterministic dependence: “o either depends on i1 or on i2”

(19~O~(~9-O

O
O
O

“whenever the traces agree on i1, they agree on 0”

?

V

?

e @ . “whenever the traces agree on i2, they agree on 0”

?

14

Inclusion atoms and non-inference

Inclusion atom (p1,...,pn) € (q1,...,qn) states that all truth value combinations that
occur for p1,..., pn also occur for q1,...,qn :

(T7I) ‘: (p17~--7pn)g(qla--~7qn) iff vee T3se T
{p1,...,pnt O t[i] ={p1,---,pn} N s[i]

15

Inclusion atoms and non-inference

Inclusion atom (p1,...,pn) € (q1,...,qn) states that all truth value combinations that
occur for p1,..., pn also occur for q1,...,qn :

(T, E(p1,---ypPn) C(q1,-..,qn) Iff Vi€ TIs€ T
{p1,...,pnt O t[i] ={p1,---,pn} N s[i]

This can be used, e.g, to express non-inference

(p17"'7pn75) g (QIy--~>Qn7_‘5)~

Public observables p1, ..., p, do not reveal the secret s.

15

Temporal team semantics

Definition 1

Temporal team is (T, i), where T a set of traces and i € N.

) EP iff Vte T:pe t[0]

) E-p iff YVt €T :pé¢t[0]
) E oAy it (T,i)E¢and (T,i) =9
) E VY iff (Ti,i) E ¢ and (Ty, i) E 4, forsome T1, Tost. iU T, =T
i) E Xe iff (T,i+1)Ee

) EdUs iff Sk>ist (T,k) EwandVm:i<m<k= (T, m) ¢
) EGWy iff Vk>i: (T, k)= dorImst. i<m<kand (T, m) =

4 494944944+

(
(
(
(
(
(
(

16

Hyperlogic via team semantics

e Temporal logics with team semantics express hyperproperties.

e Purely modal logic & well suited for properties of unbounded number of traces.

17

Hyperlogic via team semantics

e Temporal logics with team semantics express hyperproperties.

e Purely modal logic & well suited for properties of unbounded number of traces.
e Expressivity
o TeamLTL and HyperlLogics are othogonal in expressivity.

o Well behaved fragments of TeamLTL can be translated to HyperlLogics with some
form of set quantification.

o Upper bound of expressivity is often monadic second-order logic with equi-level
predicate.

17

Hyperlogic via team semantics

Temporal logics with team semantics express hyperproperties.

Purely modal logic & well suited for properties of unbounded number of traces.
Expressivity

o TeamLTL and HyperlLogics are othogonal in expressivity.

o Well behaved fragments of TeamLTL can be translated to HyperlLogics with some
form of set quantification.

o Upper bound of expressivity is often monadic second-order logic with equi-level
predicate.

Complexity landscape is not completely mapped

o Where is the undecidability frontier of TeamLTL extensions?
o A large EXPTIME fragment: left-flat and downward closed logics
o Already TeamLTL with inclusion atoms and Boolean disjunctions is undecidable

17

Generalised atoms and complete logics

Let B be a set of n-ary Boolean relations. We define the property [¢1, ..., @a]s for an
n-tuple (p1,...,p,) of LTL-formulae:

(Tv i)): [@17 ce v‘Pn]B iff {(H¢1H(t,i)’~ 20g [[an]](t,i)) ’ te T} €B.

18

Generalised atoms and complete logics

Let B be a set of n-ary Boolean relations. We define the property [¢1, ..., @a]s for an
n-tuple (p1,...,p,) of LTL-formulae:

(Tv i)): [@1,.. . v‘Pn]B iff {(H¢1H(t,i)a~ : '7[¢nﬂ(t,i)) ‘ te T} €B.

Theorem 2 ([FsTTCs 2021])

TeamLTL(®, NE, A) can express all [p1,...,¢n]B-
1
TeamLTL(®, A) can express all [¢1,...,pn|s, for downward closed B.

o (T,i)ENEff T #0.
o (T.i)EApiff ({t},i) =, forall te T.

18

Complexity results

Logic Model Checking Result

TeamLTL without V in PSPACE [MFcs 2018]
k-coherent TeamLTL(~) in EXPSPACE [FsTTCS 2021]

1

left-flat TeamLTL(@,A) in EXPSPACE [FSTTCS 2021]

TeamLTL(C, @) ¥ 2-hard [FSTTCS 2021]
TeamLTL(C, @, A) ¥ 1-hard [FSTTCS 2021]
TeamLTL(~) complete for third-order arithmetic [Liic20]

e k-coherence: (T,i) = iff (S,i) =@ forall S C T st |S| <k
o left-flatness: Restrict U and W syntactically to (A@Uw) and (A@Wd))

e ~ is contradictory negation and TeamLTL(~) subsumes all the other logics

19

Source of Undecidability

Definition 3
A non-deterministic 3-counter machine M consists of a list / of n instructions that
manipulate three counters C;, C,, and C,. All instructions are of the following forms:

e C) goto {j1,/2}, C, goto {Jj1,/2}, if C, =0 goto jelse goto j,
where a € {I,m,r}, 0 < ji,jo < n.

20

Source of Undecidability

Definition 3

A non-deterministic 3-counter machine M consists of a list / of n instructions that
manipulate three counters C;, C,, and C,. All instructions are of the following forms:

e C) goto {j1,/2}, C, goto {Jj1,/2}, if C, =0 goto jelse goto j,
where a € {I,m,r}, 0 < ji,jo < n.

e configuration: tuple (/,J, k, /), where 0 < j < n is the next instruction to be
executed, and j, k,/ € N are the current values of the counters C;, C,, and C,.

e computation: infinite sequence of consecutive configurations starting from the
initial configuration (0,0,0,0).
e computation b-recurring if the instruction labelled b occurs infinitely often in it.

e computation is lossy if the counter values can non-deterministically decrease

20

Undecidability results

Theorem 4 ([AH94; Sch10])

Deciding whether a given non-deterministic 3-counter machine has a (lossy)
b-recurring computation for a given b is (¥-complete) ¥1-complete.

21

Undecidability results

Theorem 4 ([AH94; Sch10])

Deciding whether a given non-deterministic 3-counter machine has a (lossy)
b-recurring computation for a given b is (¥-complete) ¥1-complete.

Theorem 5 ([FsTTCs 2021])

Model checking for TeamLTL(®, C) is £3-hard.
Model checking for TeamLTL(®, C,A) is ¥1-hard.

Proof Idea:
e reduce existence of b-recurring computation of given 3-counter machine M and
instruction label b to model checking problem of TeamLTL(®, C,A)
e TeamLTL(®, C) suffices to enforce lossy computation
e T[i,o0] encodes the value of counters of the ith configuration
the value of C, is the cardinality of the set {t € T[i,o0] | c; € t[0]}

21

Model checking for TeamLTL(C, @) is £9-hard.

Proof.
Given a set | of instructions of a 3-counter machine M, and an instruction label b, we
construct a TeamLTL(C, @)-formula ¢; , and a Kripke structure £/ such that

(Traces(®),0) = ¢ iff M has a b-recurring lossy computation. (1)

The Z(l)—hardness then follows since the construction is computable. O

22

Idea of the encoding

A set of traces T encodes the configuration (c, d, e, f) € N*, if
e For all t € T, the only instruction in t[0] is c.
e The cardinality of {t € T | ¢; € t[0]} is d.
e The cardinality of {t € T | ¢y, € t[0]} is e.
e The cardinality of {t € T | ¢, € t[0]} is f.

28]

Idea of the encoding

A set of traces T encodes the configuration (c, d, e, f) € N*, if
e For all t € T, the only instruction in t[0] is c.
e The cardinality of {t € T | ¢; € t[0]} is d.
e The cardinality of {t € T | ¢y, € t[0]} is e.
e The cardinality of {t € T | ¢, € t[0]} is f.

The infinite sequence (T[i, o0]);en encodes an infinite computation.

28]

Idea of the encoding

A set of traces T encodes the configuration (c, d, e, f) € N*, if
e For all t € T, the only instruction in t[0] is c.
e The cardinality of {t € T | ¢; € t[0]} is d.
e The cardinality of {t € T | ¢y, € t[0]} is e.
e The cardinality of {t € T | ¢, € t[0]} is f.

The infinite sequence (T[i, o0]);en encodes an infinite computation.

The computation is lossy, since distinct traces in T may collapse to a single trace in
T[i,<].

28]

Idea of the encoding

A set of traces T encodes the configuration (c, d, e, f) € N*, if
e For all t € T, the only instruction in t[0] is c.
e The cardinality of {t € T | ¢; € t[0]} is d.
e The cardinality of {t € T | ¢y, € t[0]} is e.
e The cardinality of {t € T | ¢, € t[0]} is f.

The infinite sequence (T[i, o0]);en encodes an infinite computation.

The computation is lossy, since distinct traces in T may collapse to a single trace in
T[i,<].

The Kripke structure Traces(R/) encodes all infinite sequences of configurations.

28]

Construction of the formula

The formula ¢ 5 enforces that the configurations encoded by T[i,oc], i € N, encode
an accepting computation of the counter machine; Vi, guesses the computation.

¢I7b = (ecomp A Hb—rec) vy, T.

The formula Ocomp states that the encoded computation is legal.

24

Construction of the formula

The formula ¢ 5 enforces that the configurations encoded by T[i,oc], i € N, encode
an accepting computation of the counter machine; Vi, guesses the computation.

¢I7b = (ecomp A Hb—rec) vy, T.

The formula Ocomp states that the encoded computation is legal.

The formula
Op—_rec .= GFb

describes the b-recurrence condition of the computation.

24

Expressing legality of computation

Define

singleton == G /\ (a @ —a), cs-non-increase = ¢s V (—¢cs A X—c), for s € {I,m,r}.
acPROP

25

Expressing legality of computation

Define

singleton == G /\ (a @ —a), cs-non-increase = ¢s V (—¢cs A X—c), for s € {I,m,r}.
acPROP

For the instruction i: ;" goto {j,;'}, define

0; = X({@j" A ((singleton A—¢iAXcr)Ve-non-increase)/\cr—non—increase A Cm-non-increase .

25

Expressing legality of computation

Define

singleton == G /\ (a @ —a), cs-non-increase = ¢s V (—¢cs A X—c), for s € {I,m,r}.
acPROP

For the instruction i: ;" goto {j,;'}, define
0; = X(j@j’)/\((singleton A—¢iAXcr)Ve-non-increase)/\cr—non—increase A Cm-non-increase .

For the instruction /: if C; = 0 goto J, else goto j/, defined similarly.

25

Expressing legality of computation

Define

singleton == G /\ (a @ —a), cs-non-increase = ¢s V (—¢cs A X—c), for s € {I,m,r}.
acPROP

For the instruction i: ;" goto {j,;'}, define
0; = X(j@j’)/\((singleton A—¢iAXcr)Ve-non-increase)/\cr—non—increase A Cm-non-increase .

For the instruction /: if C; = 0 goto J, else goto j/, defined similarly.

Finally, define feomp = G D ;n(i A 6)).

25

Known complexity results

Logic TSAT TPC T™MC

LTL PSPACE PSPACE PSPACE-hard

LTL(dep) PSPACE PSPACE NEXPTIME-hard

LTL(®@, D) ¥9-hard PSPACE ¥9%-hard

TeamLTL(C, @) ¥9-hard ? ¥%-hard

TeamLTL(C, @) Y 1-hard ? ¥ 1-hard

LTL(D, ~) third-order arithmetic [Lic20] PSPACE third-order arithmetic [Liic20]
LTL - v ? ? € PSPACE

k-coherent TeamLTL(~) ? ? in EXPSPACE

left-flat TeamLTL(@,A) ? ? in EXPSPACE

Figure 1: Overview of complexity results for TeamLTL. ‘dep’ refers to dependence atoms, ‘~’
refers to the contradictory negation, D refers to any finite set of first-order definable generalised
atoms, and ‘'LTL — V' refers to disjunction free LTL. References: [MFCS 2018; FSTTCS 2021].

26

Further related work

e All logics mentioned specify syncronous hyperproperties.
Attention shifted to logics utilising forms of asynchronicity [LICS 2022; MFCS 2023].

e Logics for quantitative or probabilistic hyperproperties.
E.g., hyperproperties of Markov decision processes.

27

Further related work

All logics mentioned specify syncronous hyperproperties.
Attention shifted to logics utilising forms of asynchronicity [LICS 2022; MFCS 2023].

Logics for quantitative or probabilistic hyperproperties.
E.g., hyperproperties of Markov decision processes.

Theoretical results are mainly complexity theoretic and expressivity comparisons
with variants of MSQO.

Tool support: Automata-based model checker AutoHyper [BF23].

27

Conclusion

e Introduction into Temporal Logics
e Hyperproperties and Temporal Team Semantics
e Undecidability of model checking of TeamLTL(©@, Q)

Bibliography i

[FsTTCs 2021] Jonni Virtema, Jana Hofmann, Bernd Finkbeiner, Juha Kontinen and
Fan Yang. ‘Linear-Time Temporal Logic with Team Semantics:
Expressivity and Complexity’. In: FSTTCS. Vol. 213. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021, 52:1-52:17.

[LiCS 2022] Jens Oliver Gutsfeld, Arne Meier, Christoph Ohrem and Jonni Virtema.
‘Temporal Team Semantics Revisited'. In: LICS '22: 37th Annual
ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel,
August 2 - 5, 2022. Ed. by Christel Baier and Dana Fisman. ACM,
2022, 44:1-44:13. DOI: 10.1145/3531130.3533360.

[MFcs 2018] Andreas Krebs, Arne Meier, Jonni Virtema and Martin Zimmermann.
‘Team Semantics for the Specification and Verification of
Hyperproperties'. In: MFCS. Vol. 117. LIPlcs. Schloss Dagstuhl -
Leibniz-Zentrum fur Informatik, 2018, 10:1-10:16.

28

https://doi.org/10.1145/3531130.3533360

Bibliography ii

[MFcs 2023] Juha Kontinen, Max Sandstrom and Jonni Virtema. ‘Set Semantics for
Asynchronous TeamLTL: Expressivity and Complexity'. In: MFCS.
Vol. 272. LIPlcs. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2023, 60:1-60:14.

[AH94] Rajeev Alur and Thomas A. Henzinger. ‘A Really Temporal Logic'. In: J.
ACM 41.1 (1994), pp. 181-204.
[BF23] Raven Beutner and Bernd Finkbeiner. ‘AutoHyper: Explicit-State Model

Checking for HyperLTL'. In: TACAS (1). Vol. 13993. Lecture Notes in
Computer Science. Springer, 2023, pp. 145-163.

[CES86] E. Clarke, E. Allen Emerson and A. Sistla. ‘Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Specifications’.

In: ACM Transactions on Programming Languages and Systems 8.2
(1986), pp. 244-263.

29

Bibliography iii

[Cla+14]

[EVW02]

[FH16]

Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini,

Kristopher K. Micinski, Markus N. Rabe and César Sdnchez. ‘Temporal
Logics for Hyperproperties'. In: POST. Vol. 8414. Lecture Notes in
Computer Science. Springer, 2014, pp. 265-284.

Kousha Etessami, Moshe Y. Vardi and Thomas Wilke. ‘First-Order
Logic with Two Variables and Unary Temporal Logic'. In: Inf. Comput.
179.2 (2002), pp. 279-295.

Bernd Finkbeiner and Christopher Hahn. ‘Deciding Hyperproperties'. In:
CONCUR. Vol. 59. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fir
Informatik, 2016, 13:1-13:14.

30

Bibliography iv

[For+21]

[Liic20]

[SC85]

[Sch10]

Marie Fortin, Louwe B. Kuijer, Patrick Totzke and Martin Zimmermann.
‘HyperLTL Satisfiability Is ¥1-Complete, HyperCTL* Satisfiability Is

¥ 2-Complete’. In: MFCS. Vol. 202. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fur Informatik, 2021, 47:1-47:19.

Martin Liick. ‘On the complexity of linear temporal logic with team
semantics'. In: Theor. Comput. Sci. 837 (2020), pp. 1-25.

A. Prasad Sistla and Edmund M. Clarke. ‘'The Complexity of
Propositional Linear Temporal Logics'. In: J. ACM 32.3 (1985),
pp. 733-749.

Philippe Schnoebelen. ‘Lossy Counter Machines Decidability Cheat
Sheet’. In: RP. Vol. 6227. Lecture Notes in Computer Science. Springer,
2010, pp. 5b1-75.

31

Bibliography v

[Sto74]

L.J. Stockmeyer. The Complexity of Decision Problems in Automata
Theory and Logic. MAC TR. Massachusetts Institute of Technology,

Project MAC, 1974. URL:
https://books.google.co.uk/books?id=zFbQMQAACAAJ.

32

https://books.google.co.uk/books?id=zFbQMQAACAAJ

Extra complexity result

Proposition 6

How complicated it is to decide whether a TeamLTL(C, @)-formula is 1-coherent?

83

Extra complexity result

Proposition 6

Deciding whether a TeamLTL(C, @)-formula is 1-coherent is N9-hard.

83

Extra complexity result

Proposition 6

Deciding whether a TeamLTL(C, @)-formula is 1-coherent is N9-hard.

Proof.

Input: TeamLTL(C, @)-formula ¢.
1. Rewrite ¢ into an LTL-formula ¢* equivalent to ¢ over singleton teams.
2. @ is not satisfiable, if and only if, ¢» 1-coherent and (" is not satisfiable.

3. Since deciding whether ¢* is not satisfiable is done in PSPACE and deciding
whether ¢ is not satisfiable is I'I?—hard, checking 1-coherence of ¢ is I'I?-hard.

O]

83

Extra complexity result

Proposition 6

Deciding whether a TeamLTL(C, @)-formula is 1-coherent is N9-hard.

Proof.

Input: TeamLTL(C, @)-formula ¢.
1. Rewrite ¢ into an LTL-formula ¢* equivalent to ¢ over singleton teams.
2. @ is not satisfiable, if and only if, ¢ 1-coherent and ™ is not satisfiable.

3. Since deciding whether ©* is not satisfiable is done in PSPACE and deciding
whether ¢ is not satisfiable is M%-hard, checking 1-coherence of ¢ is M9-hard.

If ¢ is not satisfiable, then trivially it is 1-coherent and ¢* is not satisfiable.
If ¢ is 1-coherent then it is safisfiable, if and only if, it is satisfiable on a singleton
team. Hence if ¢* is not satisfiable then neither is . O

83

