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Logics for verification and specification of concurrent systems

Basic setting:

• System (e.g., piece of software or hardware)
⇝ Kripke structure depicting the behaviour of the system

• A single run of the system
⇝ a trace generated by the Kripke structure

• A property of the system (e.g., every request is eventually granted)
⇝ a formula of some formal language expressing the property.

Model checking:

• Check whether a given system satisfies a given specification.

SAT solving:

• Check whether a given specification (or collection of) can be realised.
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Traceproperties and hyperproperties

Opening your office computer after holidays:

s(hut)

l(oading)
l(oading)

c(onnecting)

r(eady)

s l r r
· · ·

s l c r r
· · ·

s l c l c r
· · ·

...

Traceproperties hold in a system if each trace (in isolation) has the property:

• The computer will be eventually ready (or will be loading forever).

Hyperproperties are properties of sets of traces:

• The computer will be ready in bounded time.
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Temporal Logic for traceproperties: Semantics by Example

Xφ: φ

Fφ: φ

Gφ: φ φ φ φ φ φ

φUψ: φ φ φ ψ

s1 s2

s3

s4 s5

[greenUblue]

F(blue ∧ Xgreen)

Gblue
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Examples for Interesting Properties in Temporal Logics

Mutal exclusion, i.e., no two processes can be in their critical section at the same time:

G(¬p1 ∨ ¬p2)

Starvation freeness, i.e., there is always a call to process p:

GFp

Progress, i.e., some property r which implies a future call of process p:

G(r → Fp)
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Logics for traceproperties

• Linear-time temporal logic (LTL) is one of the most prominent logics for the
specification and verification of reactive and concurrent systems.

• Model checking tools like SPIN and NuSMV automatically verify whether a given
computer system is correct with respect to its LTL specification.

• One reason for the success of LTL over first-order logic is that LTL is a purely
modal logic and thus has many desirable properties.

◦ LTL is decidable (PSPACE-comp. model checking and satisfiability) [SC85; CES86].
◦ FO2(≤) and FO3(≤) SAT are NEXPTIME-c. and non-elementary [EVW02; Sto74] .

• Caveat: LTL can specify only traceproperties.
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Recipe for logics for hyperproperties [Cla+14]

A logic for traceproperties ⇝ add trace quantifiers

In LTL the satisfying object is a trace: T |= φ iff ∀t ∈ T : t |= φ

φ ::= p | ¬φ | (φ ∨ φ) | Xφ | φUφ

In HyperLTL the satisfying object is a set of traces and a trace assignment: Π |=T φ

φ ::= ∃πφ | ∀πφ | ψ
ψ ::= pπ | ¬ψ | (ψ ∨ ψ) | Xψ | ψUψ

HyperQPTL extends HyperLTL by (uniform) quantification of propositions: ∃pφ, ∀pφ
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Hyperlogics via quantifier extensions

• LTL, QPTL, CTL, etc. vs. HyperLTL, HyperQPTL, HyperCTL, etc.
are prominent logics for traceproperties vs. hyperproperties of systems

◦ Traceproperty: Each request is eventually granted (properties of traces)
◦ Hyperproperty: Non-inference (values of public outputs do not leak information

about confidential bits), (properties of sets of traces)

• HyperLogics are of high complexity or undecidable.
Not well suited for properties involving unbounded number of traces.
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Properties of quantification based hyperproperties

• Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc.

• Retain some desirable properties of LTL, but are not purely modal logics

◦ Model checking for ∃∗HyperLTL and HyperLTL are PSPACE and non-elementary
[FH16; Cla+14].

◦ HyperLTL satisfiability is highly undecidable [For+21].
◦ HyperLTL formulae express properties expressible using fixed finite number of traces.

• Bounded termination is not definable in HyperLTL (but is in HyperQPTL)

• Team semantics is a candidate for a purely modal logic without the above caveat.
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LTL, HyperLTL, and TeamLTL [MFCS 2018]

In LTL the satisfying object is a trace: T |= φ iff ∀t ∈ T : t |= φ

φ ::= p | ¬φ | (φ ∨ φ) | Xφ | φUφ

In HyperLTL the satisfying object is a set of traces and a trace assignment: Π |=T φ

φ ::= ∃πφ | ∀πφ | ψ
ψ ::= pπ | ¬ψ | (ψ ∨ ψ) | Xψ | ψUψ

In TeamLTL the satisfying object is a set of traces. We use team semantics: (T , i) |= φ

φ ::= p | ¬p | (φ ∨ φ) | (φ ∧ φ) | Xφ | φU | φWφ

+ new atomic statements (dependence and inclusion atoms: dep(p⃗, q), p⃗ ⊆ q⃗)
+ additional connectives (Boolean disjunction, contradictory negation, etc.)

Extensions are a well-defined way to delineate expressivity and complexity
9



Semantics of TeamLTL

Temporal team semantics is universal and synchronous

(T , i) |= p iff ∀t ∈ T : p ∈ t[i ] (T , i) |= ¬p iff ∀t ∈ T : p ̸∈ t[i ]

(T , i) |= Fφ iff (T , j) |= φ for some j ≥ i (T , i) |= Gφ iff (T , j) |= φ for all j ≥ i
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Example: HyperQLTL

There is a timepoint (common for all traces) where a is false in each trace.
Not expressible in HyperLTL, but is in HyperQPTL.

∃p ∀π G(p → XG¬p) ∧ F(p ∧ ¬aπ)

· · ·
· · ·
· · ·
· · ·

a a

a a

a a
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Examples: Disjunction in TeamLTL

A trace-set T satisfies φ ∨ ψ if it decomposed to sets Tφ and Tψ satisfying φ and ψ.

(T , i) |= φ ∨ ψ iff (T1, i) |= φ and (T2, i) |= ψ, for some T1 ∪ T2 = T

(T , i) |= φ ∧ ψ iff (T , i) |= φ and (T , i) |= ψ

13



Examples: Dependence atom in TeamLTL

Dependence atom dep(p1, . . . , pm, q) states that p1, . . . , pm functionally determine q:

(T , i) |= dep(p1, . . . , pm, q) iff ∀t, t ′ ∈ T

{p1, . . . , pm} ∩ t[i ] = {p1, . . . , pm} ∩ t ′[i ] ⇒ {q} ∩ t[i ] = {q} ∩ t ′[i ]

14



Examples: Dependence atom in TeamLTL

Dependence atom dep(p1, . . . , pm, q) states that p1, . . . , pm functionally determine q:

(T , i) |= dep(p1, . . . , pm, q) iff ∀t, t ′ ∈ T

{p1, . . . , pm} ∩ t[i ] = {p1, . . . , pm} ∩ t ′[i ] ⇒ {q} ∩ t[i ] = {q} ∩ t ′[i ]

14



Inclusion atoms and non-inference

Inclusion atom (p1, . . . , pn) ⊆ (q1, . . . , qn) states that all truth value combinations that
occur for p1, . . . , pn also occur for q1, . . . , qn :

(T , i) |= (p1, . . . , pn) ⊆ (q1, . . . , qn) iff ∀t ∈ T ∃s ∈ T

{p1, . . . , pn} ∩ t[i ] = {p1, . . . , pn} ∩ s[i ]

This can be used, e.g, to express non-inference

(p1, . . . , pn, s) ⊆ (q1, . . . , qn,¬s).

Public observables p1, . . . , pn do not reveal the secret s.
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Temporal team semantics

Definition 1

Temporal team is (T , i), where T a set of traces and i ∈ N.

(T , i) |= p iff ∀t ∈ T : p ∈ t[0]

(T , i) |= ¬p iff ∀t ∈ T : p ̸∈ t[0]

(T , i) |= ϕ ∧ ψ iff (T , i) |= ϕ and (T , i) |= ψ

(T , i) |= ϕ ∨ ψ iff (T1, i) |= ϕ and (T2, i) |= ψ, for some T1,T2 s.t. T1 ∪ T2 = T

(T , i) |= Xφ iff (T , i + 1) |= φ

(T , i) |= ϕUψ iff ∃k ≥ i s.t. (T , k) |= ψ and ∀m : i ≤ m < k ⇒ (T ,m) |= ϕ

(T , i) |= ϕWψ iff ∀k ≥ i : (T , k) |= ϕ or ∃m s.t. i ≤ m ≤ k and (T ,m) |= ψ
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Hyperlogic via team semantics

• Temporal logics with team semantics express hyperproperties.

• Purely modal logic & well suited for properties of unbounded number of traces.

• Expressivity

◦ TeamLTL and HyperLogics are othogonal in expressivity.
◦ Well behaved fragments of TeamLTL can be translated to HyperLogics with some

form of set quantification.
◦ Upper bound of expressivity is often monadic second-order logic with equi-level

predicate.

• Complexity landscape is not completely mapped

◦ Where is the undecidability frontier of TeamLTL extensions?
◦ A large EXPTIME fragment: left-flat and downward closed logics
◦ Already TeamLTL with inclusion atoms and Boolean disjunctions is undecidable
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Generalised atoms and complete logics

Let B be a set of n-ary Boolean relations. We define the property [φ1, . . . , φn]B for an
n-tuple (φ1, . . . , φn) of LTL-formulae:

(T , i) |= [φ1, . . . , φn]B iff {(Jϕ1K(t,i), . . . , JϕnK(t,i)) | t ∈ T} ∈ B.

Theorem 2 ([FSTTCS 2021])

TeamLTL(6,NE,
1

A) can express all [φ1, . . . , φn]B .

TeamLTL(6,
1

A) can express all [φ1, . . . , φn]B , for downward closed B.

• (T , i) |= NE iff T ̸= ∅.
• (T , i) |=

1

Aφ iff ({t}, i) |= φ, for all t ∈ T .

18
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Complexity results

Logic Model Checking Result

TeamLTL without ∨ in PSPACE [MFCS 2018]
k-coherent TeamLTL(∼) in EXPSPACE [FSTTCS 2021]

left-flat TeamLTL(6,
1

A) in EXPSPACE [FSTTCS 2021]
TeamLTL(⊆,6) Σ0

1-hard [FSTTCS 2021]
TeamLTL(⊆,6,A) Σ1

1-hard [FSTTCS 2021]
TeamLTL(∼) complete for third-order arithmetic [Lüc20]

• k-coherence: (T , i) |= φ iff (S , i) |= φ for all S ⊆ T s.t. |S | ≤ k

• left-flatness: Restrict U and W syntactically to (
1

AφUψ) and (
1

AφWψ)

• ∼ is contradictory negation and TeamLTL(∼) subsumes all the other logics

19



Source of Undecidability

Definition 3

A non-deterministic 3-counter machine M consists of a list I of n instructions that
manipulate three counters Cl , Cm and Cr . All instructions are of the following forms:

• C+
a goto {j1, j2}, C−

a goto {j1, j2}, if Ca = 0 goto j1else goto j2,

where a ∈ {l ,m, r}, 0 ≤ j1, j2 < n.

• configuration: tuple (i , j , k, l), where 0 ≤ i < n is the next instruction to be
executed, and j , k , l ∈ N are the current values of the counters Cl , Cm and Cr .

• computation: infinite sequence of consecutive configurations starting from the
initial configuration (0, 0, 0, 0).

• computation b-recurring if the instruction labelled b occurs infinitely often in it.

• computation is lossy if the counter values can non-deterministically decrease
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Undecidability results

Theorem 4 ([AH94; Sch10])

Deciding whether a given non-deterministic 3-counter machine has a (lossy)
b-recurring computation for a given b is (Σ0

1-complete) Σ1
1-complete.

Theorem 5 ([FSTTCS 2021])

Model checking for TeamLTL(6,⊆) is Σ1
0-hard.

Model checking for TeamLTL(6,⊆,A) is Σ1
1-hard.

Proof Idea:

• reduce existence of b-recurring computation of given 3-counter machine M and
instruction label b to model checking problem of TeamLTL(6,⊆,A)

• TeamLTL(6,⊆) suffices to enforce lossy computation

• T [i ,∞] encodes the value of counters of the ith configuration
the value of Ca is the cardinality of the set {t ∈ T [i ,∞] | ca ∈ t[0]}
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Model checking for TeamLTL(⊆,6) is Σ0
1-hard.

Proof.

Given a set I of instructions of a 3-counter machine M, and an instruction label b, we
construct a TeamLTL(⊆,6)-formula φI ,b and a Kripke structure KI such that(

Traces(KI ), 0
)
|= φI ,b iff M has a b-recurring lossy computation. (1)

The Σ0
1-hardness then follows since the construction is computable.
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Idea of the encoding

A set of traces T encodes the configuration (c , d , e, f ) ∈ N4, if

• For all t ∈ T , the only instruction in t[0] is c.

• The cardinality of {t ∈ T | cl ∈ t[0]} is d .

• The cardinality of {t ∈ T | cm ∈ t[0]} is e.

• The cardinality of {t ∈ T | cr ∈ t[0]} is f .

The infinite sequence (T [i ,∞])i∈N encodes an infinite computation.

The computation is lossy, since distinct traces in T may collapse to a single trace in
T [i ,∞].

The Kripke structure Traces(KI ) encodes all infinite sequences of configurations.
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Construction of the formula

The formula ϕI ,b enforces that the configurations encoded by T [i ,∞], i ∈ N, encode
an accepting computation of the counter machine; ∨L guesses the computation.

ϕI ,b := (θcomp ∧ θb−rec) ∨L ⊤.

The formula θcomp states that the encoded computation is legal.

The formula
θb−rec := GFb

describes the b-recurrence condition of the computation.
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Expressing legality of computation

Define

singleton := G
∧

a∈PROP

(a 6 ¬a), cs-non-increase := cs ∨ (¬cs ∧ X¬cs), for s ∈ {l ,m, r}.

For the instruction i : C+
l goto {j , j ′}, define

θi := X(j6j ′)∧
(
(singleton∧¬cl∧Xcl)∨cl-non-increase

)
∧cr-non-increase∧ cm-non-increase .

For the instruction i : if Cs = 0 goto j , else goto j ′, defined similarly.

Finally, define θcomp := G6i<n(i ∧ θi ).
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For the instruction i : if Cs = 0 goto j , else goto j ′, defined similarly.

Finally, define θcomp := G6i<n(i ∧ θi ).
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Known complexity results

Logic TSAT TPC TMC

LTL PSPACE PSPACE PSPACE-hard
LTL(dep) PSPACE PSPACE NEXPTIME-hard
LTL(6,D) Σ0

1-hard PSPACE Σ0
1-hard

TeamLTL(⊆,6) Σ0
1-hard ? Σ0

1-hard

TeamLTL(⊆,6,
1

A) Σ1
1-hard ? Σ1

1-hard
LTL(D,∼) third-order arithmetic [Lüc20] PSPACE third-order arithmetic [Lüc20]
LTL− ∨ ? ? ∈ PSPACE
k-coherent TeamLTL(∼) ? ? in EXPSPACE

left-flat TeamLTL(6,
1

A) ? ? in EXPSPACE

Figure 1: Overview of complexity results for TeamLTL. ‘dep’ refers to dependence atoms, ‘∼’
refers to the contradictory negation, D refers to any finite set of first-order definable generalised
atoms, and ‘LTL− ∨’ refers to disjunction free LTL. References: [MFCS 2018; FSTTCS 2021].
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Further related work

• All logics mentioned specify syncronous hyperproperties.
Attention shifted to logics utilising forms of asynchronicity [LICS 2022; MFCS 2023].

• Logics for quantitative or probabilistic hyperproperties.
E.g., hyperproperties of Markov decision processes.

• Theoretical results are mainly complexity theoretic and expressivity comparisons
with variants of MSO.

• Tool support: Automata-based model checker AutoHyper [BF23].
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Conclusion

• Introduction into Temporal Logics

• Hyperproperties and Temporal Team Semantics

• Undecidability of model checking of TeamLTL(6,⊆)
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Extra complexity result

Proposition 6

How complicated it is to decide whether a TeamLTL(⊆,6)-formula is 1-coherent?
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Proof.

Input: TeamLTL(⊆,6)-formula φ.

1. Rewrite φ into an LTL-formula φ∗ equivalent to φ over singleton teams.

2. φ is not satisfiable, if and only if, φ 1-coherent and φ∗ is not satisfiable.

3. Since deciding whether φ∗ is not satisfiable is done in PSPACE and deciding
whether φ is not satisfiable is Π0

1-hard, checking 1-coherence of φ is Π0
1-hard.
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Proof.

Input: TeamLTL(⊆,6)-formula φ.

1. Rewrite φ into an LTL-formula φ∗ equivalent to φ over singleton teams.

2. φ is not satisfiable, if and only if, φ 1-coherent and φ∗ is not satisfiable.

3. Since deciding whether φ∗ is not satisfiable is done in PSPACE and deciding
whether φ is not satisfiable is Π0

1-hard, checking 1-coherence of φ is Π0
1-hard.

If φ is not satisfiable, then trivially it is 1-coherent and φ∗ is not satisfiable.
If φ is 1-coherent then it is safisfiable, if and only if, it is satisfiable on a singleton
team. Hence if φ∗ is not satisfiable then neither is φ.
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