Logics for the specification of hyperproperties

5th November 2024

Jonni Virtema

University of Sheffield, UK

Basic setting:

- A single run of the system
 - \rightsquigarrow a trace generated by the Kripke structure
- A property of the system (e.g., every request is eventually granted) ~> a formula of some formal language expressing the property.

Basic setting:

- System (e.g., piece of software or hardware)

 Kripke structure depicting the behaviour of the system
- A single run of the system
 - \rightsquigarrow a trace generated by the Kripke structure
- A property of the system (e.g., every request is eventually granted) \rightsquigarrow a formula of some formal language expressing the property.

Model checking:

• Check whether a given system satisfies a given specification.

SAT solving:

• Check whether a given specification (or collection of) can be realised.

Traceproperties and hyperproperties

Opening your office computer after holidays:

Traceproperties hold in a system if each trace (in isolation) has the property:

• The computer will be eventually ready (or will be loading forever).

Hyperproperties are properties of sets of traces:

• The computer will be ready in bounded time.

S3

Gblue

Mutal exclusion, i.e., no two processes can be in their critical section at the same time:

$$\mathsf{G}(\neg p_1 \vee \neg p_2)$$

Starvation freeness, i.e., there is always a call to process *p*:

GFp

Progress, i.e., some property r which implies a future call of process p:

 $G(r \rightarrow Fp)$

- Linear-time temporal logic (LTL) is one of the most prominent logics for the specification and verification of reactive and concurrent systems.
- Model checking tools like SPIN and NuSMV automatically verify whether a given computer system is correct with respect to its LTL specification.

- Linear-time temporal logic (LTL) is one of the most prominent logics for the specification and verification of reactive and concurrent systems.
- Model checking tools like SPIN and NuSMV automatically verify whether a given computer system is correct with respect to its LTL specification.
- One reason for the success of LTL over first-order logic is that LTL is a purely modal logic and thus has many desirable properties.

◦ LTL is decidable (PSPACE-comp. model checking and satisfiability) [SC85; CES86]. ◦ $FO^2(\le)$ and $FO^3(\le)$ SAT are NEXPTIME-c. and non-elementary [EVW02; Sto74].

• Caveat: LTL can specify only traceproperties.

A logic for traceproperties \rightsquigarrow add trace quantifiers

In LTL the satisfying object is a trace: $T \models \varphi$ iff $\forall t \in T : t \models \varphi$

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \lor \varphi) \mid X\varphi \mid \varphi U\varphi$$

In HyperLTL the satisfying object is a set of traces and a trace assignment: $\Pi\models_{\mathcal{T}}\varphi$

$$\begin{split} \varphi &::= \exists \pi \varphi \mid \forall \pi \varphi \mid \psi \\ \psi &::= p_{\pi} \mid \neg \psi \mid (\psi \lor \psi) \mid X \psi \mid \psi U \psi \end{split}$$

A logic for traceproperties \rightsquigarrow add trace quantifiers

In LTL the satisfying object is a trace: $T \models \varphi$ iff $\forall t \in T : t \models \varphi$

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \lor \varphi) \mid X\varphi \mid \varphi U\varphi$$

In HyperLTL the satisfying object is a set of traces and a trace assignment: $\Pi\models_{\mathcal{T}}\varphi$

$$\begin{split} \varphi &::= \exists \pi \varphi \mid \forall \pi \varphi \mid \psi \\ \psi &::= p_{\pi} \mid \neg \psi \mid (\psi \lor \psi) \mid X \psi \mid \psi U \psi \end{split}$$

HyperQPTL extends HyperLTL by (uniform) quantification of propositions: $\exists p\varphi, \forall p\varphi$

- LTL, QPTL, CTL, etc. vs. HyperLTL, HyperQPTL, HyperCTL, etc. are prominent logics for traceproperties vs. hyperproperties of systems
 - Traceproperty: Each request is eventually granted (properties of traces)
 - Hyperproperty: Non-inference (values of public outputs do not leak information about confidential bits), (properties of sets of traces)

- LTL, QPTL, CTL, etc. vs. HyperLTL, HyperQPTL, HyperCTL, etc. are prominent logics for traceproperties vs. hyperproperties of systems
 - Traceproperty: Each request is eventually granted (properties of traces)
 - Hyperproperty: Non-inference (values of public outputs do not leak information about confidential bits), (properties of sets of traces)
- HyperLogics are of high complexity or undecidable. Not well suited for properties involving unbounded number of traces.

- Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc.
- Retain some desirable properties of LTL, but are not purely modal logics
 - $\circ~$ Model checking for $\exists^*HyperLTL$ and HyperLTL are PSPACE and non-elementary [FH16; Cla+14].
 - \circ HyperLTL satisfiability is highly undecidable [For+21].
 - $\circ~$ HyperLTL formulae express properties expressible using fixed finite number of traces.

- Quantification based logics for hyperproperties: HyperLTL, HyperCTL, etc.
- Retain some desirable properties of LTL, but are not purely modal logics
 - Model checking for ∃*HyperLTL and HyperLTL are PSPACE and non-elementary [FH16; Cla+14].
 - \circ HyperLTL satisfiability is highly undecidable [For+21].
 - $\circ~$ HyperLTL formulae express properties expressible using fixed finite number of traces.
- Bounded termination is not definable in HyperLTL (but is in HyperQPTL)
- Team semantics is a candidate for a purely modal logic without the above caveat.

LTL, HyperLTL, and TeamLTL [MFCS 2018]

In LTL the satisfying object is a trace: $T \models \varphi$ iff $\forall t \in T : t \models \varphi$

 $\varphi ::= p \mid \neg \varphi \mid (\varphi \lor \varphi) \mid X\varphi \mid \varphi U\varphi$

In HyperLTL the satisfying object is a set of traces and a trace assignment: $\Pi \models_T \varphi$

$$\begin{split} \varphi &::= \exists \pi \varphi \mid \forall \pi \varphi \mid \psi \\ \psi &::= p_{\pi} \mid \neg \psi \mid (\psi \lor \psi) \mid X \psi \mid \psi U \psi \end{split}$$

In TeamLTL the satisfying object is a set of traces. We use team semantics: $(T, i) \models \varphi$

$$\varphi ::= p \mid \neg p \mid (\varphi \lor \varphi) \mid (\varphi \land \varphi) \mid X\varphi \mid \varphi U \mid \varphi W\varphi$$

+ new atomic statements (dependence and inclusion atoms: $dep(\vec{p}, q), \vec{p} \subseteq \vec{q}$) + additional connectives (Boolean disjunction, contradictory negation, etc.) Extensions are a well-defined way to delineate expressivity and complexity

Temporal team semantics is universal and synchronous

 $(T,i) \models p \text{ iff } \forall t \in T : p \in t[i]$ $(T,i) \models \neg p \text{ iff } \forall t \in T : p \notin t[i]$

Temporal team semantics is universal and synchronous

 $(T,i) \models p \text{ iff } \forall t \in T : p \in t[i]$ $(T,i) \models \neg p \text{ iff } \forall t \in T : p \notin t[i]$

 $(T,i) \models F\varphi$ iff $(T,j) \models \varphi$ for some $j \ge i$ $(T,i) \models G\varphi$ iff $(T,j) \models \varphi$ for all $j \ge i$

There is a timepoint (common for all traces) where *a* is false in each trace. Not expressible in HyperLTL, but is in HyperQPTL. There is a timepoint (common for all traces) where *a* is false in each trace. Not expressible in HyperLTL, but is in HyperQPTL.

$$\exists p \, orall \pi \, \mathsf{G}(p o \mathsf{X}\mathsf{G}
eg p) \wedge \mathsf{F}(p \wedge
eg a_\pi)$$

There is a timepoint (common for all traces) where *a* is false in each trace. Not expressible in HyperLTL, but is in HyperQPTL.

$$\exists p \, orall \pi \, \mathsf{G}(p o \mathsf{X}\mathsf{G}
eg p) \wedge \mathsf{F}(p \wedge
eg a_\pi)$$

Expressible in synchronous TeamLTL: F ¬a

A trace-set T satisfies $\varphi \lor \psi$ if it decomposed to sets T_{φ} and T_{ψ} satisfying φ and ψ .

$$(T,i) \models \varphi \lor \psi$$
 iff $(T_1,i) \models \varphi$ and $(T_2,i) \models \psi$, for some $T_1 \cup T_2 = T$
 $(T,i) \models \varphi \land \psi$ iff $(T,i) \models \varphi$ and $(T,i) \models \psi$

HyperLTL:

 $\forall \pi. \forall \pi'. \ \mathrm{F}((\underline{a}_{\pi} \wedge \underline{a}_{\pi'}) \vee (b_{\pi} \wedge b_{\pi'}))$

TeamLTL:

 $(F a) \lor (F b)$

Examples: Dependence atom in TeamLTL

Dependence atom $dep(p_1, \ldots, p_m, q)$ states that p_1, \ldots, p_m functionally determine q:

$$(T,i) \models \operatorname{dep}(p_1,\ldots,p_m,q) \text{ iff } \forall t,t' \in T$$
$$\{p_1,\ldots,p_m\} \cap t[i] = \{p_1,\ldots,p_m\} \cap t'[i] \quad \Rightarrow \quad \{q\} \cap t[i] = \{q\} \cap t'[i]$$

Examples: Dependence atom in TeamLTL

Dependence atom $dep(p_1, \ldots, p_m, q)$ states that p_1, \ldots, p_m functionally determine q:

$$(T,i) \models \operatorname{dep}(p_1,\ldots,p_m,q) \text{ iff } \forall t,t' \in T$$

$$\{p_1,\ldots,p_m\} \cap t[i] = \{p_1,\ldots,p_m\} \cap t'[i] \quad \Rightarrow \quad \{q\} \cap t[i] = \{q\} \cap t'[i]$$

 $(\mathbf{G} \ dep(i1, \mathbf{o})) \lor (\mathbf{G} \ dep(i2, \mathbf{o}))$

Nondeterministic dependence: "o either depends on i1 or on i2"

"whenever the traces agree on i1, they agree on o"

V

"whenever the traces agree on i2, they agree on o"

Inclusion atom $(p_1, \ldots, p_n) \subseteq (q_1, \ldots, q_n)$ states that all truth value combinations that occur for p_1, \ldots, p_n also occur for q_1, \ldots, q_n :

$$(T,i) \models (p_1,\ldots,p_n) \subseteq (q_1,\ldots,q_n) \text{ iff } \forall t \in T \exists s \in T \\ \{p_1,\ldots,p_n\} \cap t[i] = \{p_1,\ldots,p_n\} \cap s[i]$$

Inclusion atom $(p_1, \ldots, p_n) \subseteq (q_1, \ldots, q_n)$ states that all truth value combinations that occur for p_1, \ldots, p_n also occur for q_1, \ldots, q_n :

$$(T,i) \models (p_1,\ldots,p_n) \subseteq (q_1,\ldots,q_n) \text{ iff } \forall t \in T \exists s \in T$$

 $\{p_1,\ldots,p_n\} \cap t[i] = \{p_1,\ldots,p_n\} \cap s[i]$

This can be used, e.g, to express non-inference

$$(p_1,\ldots,p_n,s)\subseteq (q_1,\ldots,q_n,\neg s).$$

Public observables p_1, \ldots, p_n do not reveal the secret s.

Definition 1

```
Temporal team is (T, i), where T a set of traces and i \in \mathbb{N}.
(T, i) \models p iff \forall t \in T : p \in t[0]
 (T, i) \models \neg p iff \forall t \in T : p \notin t[0]
 (T,i) \models \phi \land \psi iff (T,i) \models \phi and (T,i) \models \psi
 (T,i) \models \phi \lor \psi iff (T_1,i) \models \phi and (T_2,i) \models \psi, for some T_1, T_2 s.t. T_1 \cup T_2 = T
 (T,i) \models X\varphi iff (T,i+1) \models \varphi
 (T,i) \models \phi \cup \psi iff \exists k \ge i \text{ s.t. } (T,k) \models \psi and \forall m : i \le m < k \Rightarrow (T,m) \models \phi
 (T, i) \models \phi W \psi
                         iff \forall k > i : (T, k) \models \phi or \exists m \text{ s.t. } i < m < k \text{ and } (T, m) \models \psi
```

- Temporal logics with team semantics express hyperproperties.
- Purely modal logic & well suited for properties of unbounded number of traces.

- Temporal logics with team semantics express hyperproperties.
- Purely modal logic & well suited for properties of unbounded number of traces.
- Expressivity
 - $\circ~$ TeamLTL and HyperLogics are othogonal in expressivity.
 - Well behaved fragments of TeamLTL can be translated to HyperLogics with some form of set quantification.
 - Upper bound of expressivity is often monadic second-order logic with equi-level predicate.

- Temporal logics with team semantics express hyperproperties.
- Purely modal logic & well suited for properties of unbounded number of traces.
- Expressivity
 - $\circ~$ TeamLTL and HyperLogics are othogonal in expressivity.
 - $\circ~$ Well behaved fragments of TeamLTL can be translated to HyperLogics with some form of set quantification.
 - Upper bound of expressivity is often monadic second-order logic with equi-level predicate.
- Complexity landscape is not completely mapped
 - $\circ~$ Where is the undecidability frontier of TeamLTL extensions?
 - A large EXPTIME fragment: left-flat and downward closed logics
 - Already TeamLTL with inclusion atoms and Boolean disjunctions is undecidable

Let *B* be a set of *n*-ary Boolean relations. We define the property $[\varphi_1, \ldots, \varphi_n]_B$ for an *n*-tuple $(\varphi_1, \ldots, \varphi_n)$ of LTL-formulae:

 $(T,i) \models [\varphi_1,\ldots,\varphi_n]_B$ iff $\{(\llbracket \phi_1 \rrbracket_{(t,i)},\ldots,\llbracket \phi_n \rrbracket_{(t,i)}) \mid t \in T\} \in B.$

Let *B* be a set of *n*-ary Boolean relations. We define the property $[\varphi_1, \ldots, \varphi_n]_B$ for an *n*-tuple $(\varphi_1, \ldots, \varphi_n)$ of LTL-formulae:

 $(T,i) \models [\varphi_1,\ldots,\varphi_n]_B$ iff $\{(\llbracket \phi_1 \rrbracket_{(t,i)},\ldots,\llbracket \phi_n \rrbracket_{(t,i)}) \mid t \in T\} \in B.$

Theorem 2 ([FSTTCS 2021])

TeamLTL(\oslash , NE, \mathring{A}) can express all $[\varphi_1, \ldots, \varphi_n]_B$. TeamLTL(\oslash , \mathring{A}) can express all $[\varphi_1, \ldots, \varphi_n]_B$, for downward closed B.

- $(T, i) \models \text{NE iff } T \neq \emptyset.$
- $(T, i) \models \stackrel{1}{\mathsf{A}}\varphi$ iff $(\{t\}, i) \models \varphi$, for all $t \in T$.

Logic	Model Checking Result		
TeamLTL without \lor <i>k</i> -coherent TeamLTL(\sim)	in PSPACE [MFCS 2018] in EXPSPACE [FSTTCS 2021]		
$\begin{array}{l} \text{left-flat TeamLTL}(\oslash, \overset{1}{A}) \\ \text{TeamLTL}(\subseteq, \oslash) \\ \text{TeamLTL}(\subseteq, \oslash, A) \\ \text{TeamLTL}(\sim) \end{array}$	in EXPSPACE [FSTTCS 2021] Σ_1^0 -hard [FSTTCS 2021] Σ_1^1 -hard [FSTTCS 2021] complete for third-order arithmetic [Lüc20]		

- *k*-coherence: $(T, i) \models \varphi$ iff $(S, i) \models \varphi$ for all $S \subseteq T$ s.t. $|S| \le k$
- left-flatness: Restrict U and W syntactically to $(\overset{1}{A}\varphi U\psi)$ and $(\overset{1}{A}\varphi W\psi)$
- \sim is contradictory negation and ${\rm TeamLTL}(\sim)$ subsumes all the other logics

Definition 3

A non-deterministic 3-counter machine M consists of a list I of n instructions that manipulate three counters C_I , C_m and C_r . All instructions are of the following forms: • C_a^+ goto $\{j_1, j_2\}$, C_a^- goto $\{j_1, j_2\}$, if $C_a = 0$ goto j_1 else goto j_2 ,

where $a \in \{l, m, r\}$, $0 \le j_1, j_2 < n$.

Definition 3

A non-deterministic 3-counter machine M consists of a list I of n instructions that manipulate three counters C_I , C_m and C_r . All instructions are of the following forms: • C_a^+ goto $\{j_1, j_2\}$, C_a^- goto $\{j_1, j_2\}$, if $C_a = 0$ goto j_1 else goto j_2 , where $a \in \{I, m, r\}$, $0 \le j_1, j_2 \le n$.

- configuration: tuple (i, j, k, l), where $0 \le i < n$ is the next instruction to be executed, and $j, k, l \in \mathbb{N}$ are the current values of the counters C_l , C_m and C_r .
- computation: infinite sequence of consecutive configurations starting from the initial configuration (0,0,0,0).
- computation *b*-recurring if the instruction labelled *b* occurs infinitely often in it.
- computation is lossy if the counter values can non-deterministically decrease

Theorem 4 ([AH94; Sch10])

Deciding whether a given non-deterministic 3-counter machine has a (lossy) b-recurring computation for a given b is (Σ_1^0 -complete) Σ_1^1 -complete.

Theorem 4 ([AH94; Sch10])

Deciding whether a given non-deterministic 3-counter machine has a (lossy) b-recurring computation for a given b is (Σ_1^0 -complete) Σ_1^1 -complete.

Theorem 5 ([FSTTCS 2021])

Model checking for $\text{TeamLTL}(\emptyset, \subseteq)$ is Σ_0^1 -hard. Model checking for $\text{TeamLTL}(\emptyset, \subseteq, A)$ is Σ_1^1 -hard.

Proof Idea:

- reduce existence of b-recurring computation of given 3-counter machine M and instruction label b to model checking problem of TeamLTL(∅, ⊆, A)
- $\mathrm{TeamLTL}(\oslash,\subseteq)$ suffices to enforce lossy computation
- *T*[*i*,∞] encodes the value of counters of the *i*th configuration the value of *C_a* is the cardinality of the set {*t* ∈ *T*[*i*,∞] | *c_a* ∈ *t*[0]}

Proof.

Given a set I of instructions of a 3-counter machine M, and an instruction label b, we construct a $\text{TeamLTL}(\subseteq, \oslash)$ -formula $\varphi_{I,b}$ and a Kripke structure \mathfrak{K}_I such that

 $(\operatorname{Traces}(\mathfrak{K}_I), 0) \models \varphi_{I,b}$ iff *M* has a *b*-recurring lossy computation. (1)

The Σ_1^0 -hardness then follows since the construction is computable.

- For all $t \in T$, the only instruction in t[0] is c.
- The cardinality of $\{t \in T \mid c_l \in t[0]\}$ is d.
- The cardinality of $\{t \in T \mid c_m \in t[0]\}$ is e.
- The cardinality of $\{t \in T \mid c_r \in t[0]\}$ is f.

- For all $t \in T$, the only instruction in t[0] is c.
- The cardinality of $\{t \in T \mid c_l \in t[0]\}$ is d.
- The cardinality of $\{t \in T \mid c_m \in t[0]\}$ is e.
- The cardinality of $\{t \in T \mid c_r \in t[0]\}$ is f.

The infinite sequence $(T[i,\infty])_{i\in\mathbb{N}}$ encodes an infinite computation.

- For all $t \in T$, the only instruction in t[0] is c.
- The cardinality of $\{t \in T \mid c_l \in t[0]\}$ is d.
- The cardinality of $\{t \in T \mid c_m \in t[0]\}$ is e.
- The cardinality of $\{t \in T \mid c_r \in t[0]\}$ is f.

The infinite sequence $(T[i,\infty])_{i\in\mathbb{N}}$ encodes an infinite computation.

The computation is lossy, since distinct traces in T may collapse to a single trace in $T[i,\infty]$.

- For all $t \in T$, the only instruction in t[0] is c.
- The cardinality of $\{t \in T \mid c_l \in t[0]\}$ is d.
- The cardinality of $\{t \in T \mid c_m \in t[0]\}$ is e.
- The cardinality of $\{t \in T \mid c_r \in t[0]\}$ is f.

The infinite sequence $(T[i,\infty])_{i\in\mathbb{N}}$ encodes an infinite computation.

The computation is lossy, since distinct traces in T may collapse to a single trace in $T[i,\infty]$.

The Kripke structure $Traces(\mathfrak{K}_l)$ encodes all infinite sequences of configurations.

The formula $\phi_{I,b}$ enforces that the configurations encoded by $T[i,\infty]$, $i \in \mathbb{N}$, encode an accepting computation of the counter machine; \vee_{L} guesses the computation.

$$\phi_{I,b} \coloneqq (\theta_{\rm comp} \land \theta_{b-\rm rec}) \lor_{\rm L} \top.$$

The formula $\theta_{\rm comp}$ states that the encoded computation is legal.

The formula $\phi_{I,b}$ enforces that the configurations encoded by $T[i,\infty]$, $i \in \mathbb{N}$, encode an accepting computation of the counter machine; \vee_{L} guesses the computation.

$$\phi_{I,b} \coloneqq (\theta_{\rm comp} \land \theta_{b-\rm rec}) \lor_{\rm L} \top.$$

The formula $heta_{
m comp}$ states that the encoded computation is legal. The formula

$$\theta_{b-\mathrm{rec}} \coloneqq \mathsf{GF}b$$

describes the *b*-recurrence condition of the computation.

$$\mathsf{singleton} \coloneqq \mathsf{G} \bigwedge_{a \in \mathrm{PROP}} (a \oslash \neg a), \qquad \mathsf{c_s-non-increase} \coloneqq c_s \lor (\neg c_s \land \mathsf{X} \neg c_s), \ \mathsf{for} \ s \in \{l, m, r\}.$$

$$\mathsf{singleton}\coloneqq\mathsf{G}\bigwedge_{a\in\mathrm{PROP}}(a\oslash\neg a),\qquad\mathsf{c_s-non-increase}\coloneqq c_s\vee(\neg c_s\wedge\mathsf{X}\neg c_s),\;\mathsf{for}\;s\in\{I,m,r\}.$$

For the instruction $i: C_l^+$ goto $\{j, j'\}$, define

 $\theta_i := \mathsf{X}(j \otimes j') \land ((\mathsf{singleton} \land \neg c_l \land \mathsf{X}c_l) \lor c_l \mathsf{-non-increase}) \land c_r \mathsf{-non-increase} \land c_m \mathsf{-non-increase} .$

 $\mathsf{singleton} \coloneqq \mathsf{G} \bigwedge_{a \in \mathrm{PROP}} (a \otimes \neg a), \qquad \mathsf{c_s-non-increase} \coloneqq c_s \vee (\neg c_s \wedge \mathsf{X} \neg c_s), \text{ for } s \in \{I, m, r\}.$

For the instruction $i: C_l^+$ goto $\{j, j'\}$, define

 $\theta_i := \mathsf{X}(j \otimes j') \land ((\mathsf{singleton} \land \neg c_l \land \mathsf{X}c_l) \lor c_l \mathsf{-non-increase}) \land c_r \mathsf{-non-increase} \land c_m \mathsf{-non-increase} .$

For the instruction *i*: if $C_s = 0$ goto *j*, else goto *j'*, defined similarly.

$$\mathsf{singleton}\coloneqq\mathsf{G}\bigwedge_{a\in\mathrm{PROP}}(a\oslash\neg a),\qquad\mathsf{c_s-non-increase}\coloneqq c_s\vee(\neg c_s\wedge\mathsf{X}\neg c_s),\;\mathsf{for}\;s\in\{I,m,r\}.$$

For the instruction $i: C_l^+$ goto $\{j, j'\}$, define

 $\theta_i := \mathsf{X}(j \otimes j') \land ((\mathsf{singleton} \land \neg c_l \land \mathsf{X}c_l) \lor c_l \mathsf{-non-increase}) \land c_r \mathsf{-non-increase} \land c_m \mathsf{-non-increase} .$

For the instruction *i*: if $C_s = 0$ goto *j*, else goto *j'*, defined similarly. Finally, define $\theta_{\text{comp}} := G \bigotimes_{i < n} (i \land \theta_i)$.

Logic	TSAT	ТРС	ТМС
LTL	PSPACE	PSPACE	PSPACE-hard
LTL(dep)	PSPACE	PSPACE	NEXPTIME-hard
$\operatorname{LTL}(\otimes, \mathcal{D})$	Σ_1^0 -hard	PSPACE	Σ_1^0 -hard
$\operatorname{TeamLTL}(\subseteq, \oslash)$	$\Sigma_1^{ar 0}$ -hard	?	$\Sigma_1^{ar{0}}$ -hard
$\operatorname{TeamLTL}(\subseteq, \otimes, \overset{1}{A})$	Σ^1_1 -hard	?	Σ^1_1 -hard
$\operatorname{LTL}(\mathcal{D},\sim)$	third-order arithmetic [Lüc20]	PSPACE	third-order arithmetic [Lüc20]
$LTL - \lor$?	?	$\in PSPACE$
<i>k</i> -coherent TeamLTL(\sim)	?	?	in EXPSPACE
$left\text{-}flat\ \mathrm{TeamLTL}(\otimes, \overset{1}{A})$?	?	in EXPSPACE

Figure 1: Overview of complexity results for TeamLTL. 'dep' refers to dependence atoms, ' \sim ' refers to the contradictory negation, \mathcal{D} refers to any finite set of first-order definable generalised atoms, and 'LTL – \vee ' refers to disjunction free LTL. References: [MFCS 2018; FSTTCS 2021].

- All logics mentioned specify syncronous hyperproperties. Attention shifted to logics utilising forms of asynchronicity [LICS 2022; MFCS 2023].
- Logics for quantitative or probabilistic hyperproperties. E.g., hyperproperties of Markov decision processes.

- All logics mentioned specify syncronous hyperproperties. Attention shifted to logics utilising forms of asynchronicity [LICS 2022; MFCS 2023].
- Logics for quantitative or probabilistic hyperproperties. E.g., hyperproperties of Markov decision processes.
- Theoretical results are mainly complexity theoretic and expressivity comparisons with variants of MSO.
- Tool support: Automata-based model checker AutoHyper [BF23].

Conclusion

- Introduction into Temporal Logics
- Hyperproperties and Temporal Team Semantics
- Undecidability of model checking of $TeamLTL(\emptyset, \subseteq)$

Bibliography i

- [FSTTCS 2021] Jonni Virtema, Jana Hofmann, Bernd Finkbeiner, Juha Kontinen and Fan Yang. 'Linear-Time Temporal Logic with Team Semantics: Expressivity and Complexity'. In: FSTTCS. Vol. 213. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 52:1–52:17.
- [LICS 2022] Jens Oliver Gutsfeld, Arne Meier, Christoph Ohrem and Jonni Virtema. 'Temporal Team Semantics Revisited'. In: LICS '22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022. Ed. by Christel Baier and Dana Fisman. ACM, 2022, 44:1–44:13. DOI: 10.1145/3531130.3533360.
- [MFCS 2018] Andreas Krebs, Arne Meier, Jonni Virtema and Martin Zimmermann. 'Team Semantics for the Specification and Verification of Hyperproperties'. In: *MFCS*. Vol. 117. LIPIcs. Schloss Dagstuhl -Leibniz-Zentrum für Informatik, 2018, 10:1–10:16.

Bibliography ii

- [MFCS 2023] Juha Kontinen, Max Sandström and Jonni Virtema. 'Set Semantics for Asynchronous TeamLTL: Expressivity and Complexity'. In: MFCS.
 Vol. 272. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 60:1–60:14.
- [AH94] Rajeev Alur and Thomas A. Henzinger. 'A Really Temporal Logic'. In: J. ACM 41.1 (1994), pp. 181–204.
- [BF23] Raven Beutner and Bernd Finkbeiner. 'AutoHyper: Explicit-State Model Checking for HyperLTL'. In: *TACAS (1)*. Vol. 13993. Lecture Notes in Computer Science. Springer, 2023, pp. 145–163.
- [CES86] E. Clarke, E. Allen Emerson and A. Sistla. 'Automatic Verification of Finite-State Concurrent Systems Using Temporal Logic Specifications'. In: ACM Transactions on Programming Languages and Systems 8.2 (1986), pp. 244–263.

- [Cla+14] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe and César Sánchez. 'Temporal Logics for Hyperproperties'. In: *POST*. Vol. 8414. Lecture Notes in Computer Science. Springer, 2014, pp. 265–284.
- [EVW02] Kousha Etessami, Moshe Y. Vardi and Thomas Wilke. 'First-Order Logic with Two Variables and Unary Temporal Logic'. In: *Inf. Comput.* 179.2 (2002), pp. 279–295.
- [FH16] Bernd Finkbeiner and Christopher Hahn. 'Deciding Hyperproperties'. In: CONCUR. Vol. 59. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016, 13:1–13:14.

Bibliography iv

- $\begin{array}{ll} \mbox{[For+21]} & \mbox{Marie Fortin, Louwe B. Kuijer, Patrick Totzke and Martin Zimmermann.} \\ & \mbox{`HyperLTL Satisfiability Is Σ_1^1-Complete, HyperCTL* Satisfiability Is Σ_1^2-Complete'. In:$ *MFCS* $. Vol. 202. LIPIcs. Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2021, 47:1–47:19. \\ \end{array}$
- [Lüc20] Martin Lück. 'On the complexity of linear temporal logic with team semantics'. In: *Theor. Comput. Sci.* 837 (2020), pp. 1–25.
- [SC85] A. Prasad Sistla and Edmund M. Clarke. 'The Complexity of Propositional Linear Temporal Logics'. In: *J. ACM* 32.3 (1985), pp. 733–749.
- [Sch10] Philippe Schnoebelen. 'Lossy Counter Machines Decidability Cheat Sheet'. In: *RP*. Vol. 6227. Lecture Notes in Computer Science. Springer, 2010, pp. 51–75.

[Sto74]

L.J. Stockmeyer. The Complexity of Decision Problems in Automata Theory and Logic. MAC TR. Massachusetts Institute of Technology, Project MAC, 1974. URL: https://books.google.co.uk/books?id=zFbQMQAACAAJ.

How complicated it is to decide whether a $TeamLTL(\subseteq, \emptyset)$ -formula is 1-coherent?

Deciding whether a TeamLTL(\subseteq , \otimes)-formula is 1-coherent is Π_1^0 -hard.

Deciding whether a TeamLTL(\subseteq , \otimes)-formula is 1-coherent is Π_1^0 -hard.

Proof.

Input: TeamLTL(\subseteq , \otimes)-formula φ .

- 1. Rewrite φ into an LTL-formula φ^* equivalent to φ over singleton teams.
- 2. φ is not satisfiable, if and only if, φ 1-coherent and φ^* is not satisfiable.
- 3. Since deciding whether φ^* is not satisfiable is done in PSPACE and deciding whether φ is not satisfiable is Π_1^0 -hard, checking 1-coherence of φ is Π_1^0 -hard.

Deciding whether a TeamLTL(\subseteq , \otimes)-formula is 1-coherent is Π_1^0 -hard.

Proof.

Input: TeamLTL(\subseteq , \otimes)-formula φ .

- 1. Rewrite φ into an LTL-formula φ^* equivalent to φ over singleton teams.
- 2. φ is not satisfiable, if and only if, φ 1-coherent and φ^* is not satisfiable.
- 3. Since deciding whether φ^* is not satisfiable is done in PSPACE and deciding whether φ is not satisfiable is Π_1^0 -hard, checking 1-coherence of φ is Π_1^0 -hard.

If φ is not satisfiable, then trivially it is 1-coherent and φ^* is not satisfiable. If φ is 1-coherent then it is safisfiable, if and only if, it is satisfiable on a singleton team. Hence if φ^* is not satisfiable then neither is φ .